
A

Foundations of Modern Query Languages for Graph Databases1

RENZO ANGLES, Universidad de Talca & Center for Semantic Web Research
MARCELO ARENAS, Pontificia Universidad Católica de Chile & Center for Semantic Web Research
PABLO BARCELÓ, DCC, Universidad de Chile & Center for Semantic Web Research
AIDAN HOGAN, DCC, Universidad de Chile & Center for Semantic Web Research
JUAN REUTTER, Pontificia Universidad Católica de Chile & Center for Semantic Web Research
DOMAGOJ VRGOČ, Pontificia Universidad Católica de Chile & Center for Semantic Web Research

We survey foundational features underlying modern graph query languages. We first discuss two popular
graph data models: edge-labelled graphs, where nodes are connected by directed, labelled edges; and prop-
erty graphs, where nodes and edges can further have attributes. Next we discuss the two most fundamental
graph querying functionalities: graph patterns and navigational expressions. We start with graph patterns,
in which a graph-structured query is matched against the data. Thereafter we discuss navigational expres-
sions, in which patterns can be matched recursively against the graph to navigate paths of arbitrary length;
we give an overview of what kinds of expressions have been proposed, and how they can be combined with
graph patterns. We also discuss several semantics under which queries using the previous features can be
evaluated, what effects the selection of features and semantics has on complexity, and offer examples of
such features in three modern languages that are used to query graphs: SPARQL, Cypher and Gremlin.
We conclude by discussing the importance of formalisation for graph query languages; a summary of what
is known about SPARQL, Cypher and Gremlin in terms of expressivity and complexity; and an outline of
possible future directions for the area.

CCS Concepts: •Information systems → Query languages; •Theory of computation → Database
query languages (principles);

Additional Key Words and Phrases: Property graphs, graph databases, query languages, graph patterns,
navigation, aggregation

ACM Reference Format:
ACM V, N, Article A (January YYYY), 40 pages.
DOI: 0000001.0000001

1. INTRODUCTION
The last decade has seen a resurgence of interest in graph databases, wherein entities
from the domain of interest are represented by nodes and relationships between them
by edges. Part of this resurgence stems from the growing realisation that there are
a variety of domains for which graph databases offer a more intuitive conceptualisa-
tion than their more well-established relational cousins. For example, one can view a
social network as a graph of people who know each other. One may likewise view trans-
port networks, biological pathways, citation networks, and so on, as a graph. Although
graphs can still be (and sometimes still are) stored in relational databases, the choice to
use a graph database for certain domains has significant benefits in terms of querying,
where the emphasis shifts from joining various tables to specifying graph patterns and
navigational patterns between nodes that may span arbitrary-length paths. To support
these new types of queries, a variety of graph database engines [Erling 2012; Thomp-
son et al. 2014; The Neo4j Team 2016], graph data models [Harris and Seaborne 2013;
The Neo4j Team 2016] and graph query languages [The Neo4j Team 2016; Harris and
Seaborne 2013; Apache TinkerPop 2017] have been released over the past few years.

Scope. Our goal in this survey is to give an in-depth discussion of the main con-
ceptual features found in modern graph query languages, as both supported by graph
database engines, and studied in the theoretical literature. By organising our survey

1Work funded by the Millennium Nucleus Center for Semantic Web Research under Grant NC120004.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 R. Angles et al.

at the level of query features, rather than languages, we provide a foundational intro-
duction to the area, which helps to understand, and even define, individual query lan-
guages as the composition of features. We consider two high-level categories of query
features: graph patterns and path expressions. These features collectively form the
core of a variety of modern graph query languages [The Neo4j Team 2016; Harris and
Seaborne 2013; van Rest et al. 2016], and form the core of what has been studied in
the theoretical literature [Wood 2012; Barceló 2013].

After introducing and defining the graph query features in each category, we list
various semantics under which such features can be evaluated, provide examples of
how such features are applied in a selection of modern query languages, discuss the
computational complexity of key problems underlying such features, and present some
of their most important extensions as implemented in modern graph database engines.

We wrap up by drawing all of the foundational discussion together into a summary
of the types of features we have covered, how these features can be used to understand
the complexity and expressivity of modern query languages, the importance of formal-
isation for such languages, the key challenges underlying their implementation and
optimisation in practical engines, and possible ways in which they might evolve.

Survey structure. The survey is structured as follows:

— We first discuss two graph data models in Section 2: edge-labelled graphs, which is
the foundational model considered in the graph database literature; and property
graphs, which is a model commonly employed in practice, where nodes and edges in
labelled graphs can be annotated with additional meta-information.

— In Section 3, we discuss graph patterns, where a graph-structured query is matched
against the graph database. We also discuss the extension of such graph patterns
with additional operators, such as projection, difference, union, etc.

— Section 4 then introduces navigational expressions, which, unlike graph patterns,
can match paths of arbitrary length.

— In Section 5 we present our final remarks.

Online Appendix. An online appendix for this paper contains several aspects of
graph query languages that, while not mainstream, have enjoyed some coverage in the
research literature and in practical systems. These include an alternative semantics
for matching patterns to graphs; extensions of path queries to recursive patterns and
Datalog; additional query features such as aggregation, path unwinding and graph-to-
graph queries; as well as further extensions that can be considered.

Proviso. Throughout the survey, following the conventions of theoretical papers, we
will use the phrase “graph database” to refer to a specific data model or an instance of
that data model. We will use the phrase “graph database engine” to specify an imple-
mentation for executing queries over graph databases.

Intended audience. The main ambition of this survey is to bridge theory and practice,
relating theoretical notions of querying graphs to three modern query languages that
are popular in practice. The survey is thus primarily aimed at both theoretical and
applied researchers interested in graph databases. For a theory-oriented researcher,
the survey outlines a practical context for proposals in the theoretical literature, pro-
viding concrete examples of how practical languages instantiate or relate to theoreti-
cal proposals, discussing choices of semantics, highlighting aspects of such languages
not yet well understood in theory, etc. For a practice-oriented researcher, the survey
shows how the core of various graph query languages can be understood and compared
from a more foundational perspective, the possible semantics that can be chosen, the
effects on complexity and the practicality of a language by changing certain features

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases A:3

and/or semantics, etc. Aside from researchers, practitioners – i.e., developers, database
administrators, engineers, consultants – may also be interested in this survey, particu-
larly those involved in the development of graph database engines or query languages.

To keep the paper accessible to a broad audience, we keep formal definitions only
for core notions where it is important to be precise. Throughout the survey, we provide
a wide variety of examples, including examples in three concrete query languages:
SPARQL, Cypher and Gremlin.

Previous surveys. A number of surveys have been published in recent years in the
area of graph databases. Angles and Gutiérrez [2008] provide a survey of graph
database models. More recently, Angles [2012] presents a systematic analysis of the
functionalities of current graph database engines. Neither of these surveys covers
querying graph databases in depth, rather focusing on models and engines.

Wood [2012] and Barceló [2013] study several graph query languages from a theoret-
ical point of view, focusing on their expressive power and the computational complex-
ity of associated problems. Given the theoretical focus of both surveys, neither covers
practical aspects of modern graph query languages in detail.

Particular aspects of graph querying have also been surveyed; for example, works
by Bunke [2000], Gallagher [2006], Riesen et al. [2010], Livi and Rizzi [2013], and
Yan et al. [2016] deal with particular aspects of graph pattern matching, while Yu
and Cheng [2010] concentrate on graph reachability queries. Again, however, all such
works have a narrower focus than our survey.

Our survey complements these previous works in two novel aspects:

(1) Instead of surveying the myriad of different graph data models available, we build
our presentation in terms of two popular such data models; namely, edge-labelled
and property graphs. In spite of their simplicity, these models are flexible enough
to express most practical graph database scenarios. In addition, the most funda-
mental issues related to querying graphs are already present for these models.

(2) Though we discuss semantics and complexity, we do not focus only on the theoreti-
cal aspects of graph query languages. Instead, we identify and explain in detail the
basic features that appear in such languages, providing examples of how they are
applied in a selection of practical query languages. In summary, our paper bridges
the theory and practice of graph query languages in a novel manner; as previously
discussed, our survey thus targets a broader audience than previous works.

Specific novel aspects of this survey include a new formalisation of the property
graph model; discussion of how this model can be understood through the lens of ex-
isting theory; comparisons of practical aspects of the SPARQL, Gremlin and Cypher
query languages and the semantics they adopt; and examples of how the design of such
languages influences the complexity of query evaluation.

2. GRAPH DATA MODELS
Graphs can be used to encode data whereby nodes represent objects in a domain of
interest, and edges represent relationships between these objects. For instance, if a
graph is used to encode data about movies, nodes may be actors and movies, and a
(directed) edge from a node a to a node b may indicate that a is an actor in b. Note that
the direction of an edge matters here: we want to say that an actor stars in a movie,
but not vice-versa. A movie database can then be modelled using graphs as follows:

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 R. Angles et al.

Clint Eastwood Dirty Harry

Anna Levine Unforgiven

However, it is difficult to express different types of relationships in such a simple form
of graph. For instance, suppose that we wish to encode that Clint Eastwood is also the
director of Unforgiven. We could consider adding an edge between these nodes, thus
ending up with two nodes connected in the following way:

Clint Eastwood Unforgiven

But which edge here represents the fact that Clint Eastwood is the director of
Unforgiven? And, more generally, if we have many different types of relationships
between nodes, how can we distinguish between them?

Edge-labelled graphs. A simple and widely-adopted solution is the use of edge-
labelled graphs, where we additionally assign labels to edges that indicate the dif-
ferent types of relationships in the domain being described. We can see an example
in Figure 1 where Clint Eastwood has two relations to Unforgiven: one represented
by the edge labelled acts_in, another represented by the edge labelled directs, and
where Anna Levine also has an edge labelled acts_in to this movie.

Clint Eastwood Unforgiven
acts_in

directs
Anna Levineacts_in

Fig. 1. An edge-labelled graph encoding basic movie information with dashed labels on edges

In the following, we formalise the notion of an edge-labelled graph.

Definition 2.1 (Edge-labelled graph). An edge-labelled graph G is a pair (V,E),
where:

(1) V is a finite set of vertices (or nodes).
(2) E is a finite set of edges; formally, E ⊆ V ×Lab×V where Lab is a set of labels.

Example 2.2. Letting G = (V,E) denote the graph from Figure 1, the set of vertices
and edges, respectively, are:

V = { Clint Eastwood, Unforgiven, Anna Levine }
E = { (Clint Eastwood, acts_in, Unforgiven),

(Clint Eastwood, directs, Unforgiven),
(Anna Levine, acts_in, Unforgiven) }

The labels acts_in and directs are taken from the set Lab.

Edge-labelled graphs are widely adopted in practice where, for example, they form
the basis of the Resource Description Framework (RDF) standard used for encoding
machine-readable content on the Web [Klyne et al. 2014]. An RDF graph is simply a set
of triples analogous to the edges in a graph database, but with some further detailing:
in the case of RDF, the set V can be partitioned into disjoint sets of IRIs, literals and
blank nodes, and the set Lab is a subset of IRIs (not necessarily disjoint from V). But

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases A:5

for our purposes, we require no special consideration on the types of nodes,2 and for
simplicity, we consider an RDF graph as simply a special type of edge-labelled graph.

Note that the definition of an edge-labelled graph does not impose any particular
restriction on the topology of graphs. For example, although Figure 1 does not contain
a cycle, one can be obtained if we also add an edge labelled directedBy between Unfor-
given and Clint Eastwood, signifying that the movie was directed by Clint Eastwood.
For more involved cycles please refer to our social network example in Figure 5 below.

Although edge-labelled graphs have a simple structure, they can encode complex
information. For example, when describing certain movies in a graph database, we
may wish to encode that an actor has acted multiple times in the same movie under
different roles. At first, this may seem incompatible with our definition of a graph
database G = (V,E) since E is defined as a set of edges: we cannot have multiple edges
with the same label between the same two nodes. However, with some lateral thinking,
we can model such information as an edge-labelled graph, as per Figure 2. Here we see
that by using a node (rather than an edge) to represent each role played by the actor
in the movie, we can not only encode cases where an actor plays multiple roles in a
movie, but we can also encode additional information about the role, in this case the
total on-screen time for the character in question. With this principle of using nodes
to represent n-ary relations (where n > 2), it becomes feasible to encode increasingly
more complex information in an edge-labelled graph, such as, for example, to encode
that the same character can be portrayed by different actors, and so forth.

Property graphs. In edge-labelled graphs, we use labels to indicate the type of
edge, where multiple edges may have the same type. In a similar way, we could con-
sider labelling nodes.3 For example, in the movie graph of Figure 1, we could label
the nodes Clint Eastwood and Anna Levine as Person, and the node Unforgiven as
Movie; we may even add multiple labels to a node, for example to label Clint Eastwood
as Director and Actor. While this information can be represented in edge-labelled
graphs – for example, as done in RDF, a new node is created for Movie with an edge
labelled type extended to it from Unforgiven – having node labels as part of the model
can offer a more direct abstraction that is easier for users to query and understand.

In the same way, it is often cumbersome to add information about the edges to an
edge-labelled graph. For example, let’s say that to Figure 1, we wished to add the
source of information, e.g., that the acts_in relations were sourced from the web-site
IMDb; for this, we cannot simply add edges to the graph. Instead, we would need to
start again from the graph in Figure 1, and create a new type of n-ary relation with
the information we need: the facts in the acts_in relation together with their source of
information.4 Adding new types of information to edges in an edge-labelled graph may
thus require a major change to the graph’s structure, entailing a significant cost.

Thus, for scenarios where various new types of meta-information may regularly need
to be added to edges or nodes, the most general and widely adopted alternative is to use
an extension of an edge-labelled graph called a property graph. This model is currently
adopted by some major graph database engines, such as Neo4j [Robinson et al. 2013],
and has been recently standardised by a working group of the Linked Data Benchmark
Council (LDBC) formed by members of academia and industry [LDBC 2015].

2We will not consider the existential semantics of blank nodes nor the interpretation of datatype values nor
other special vocabularies. These issues are orthogonal to our goal of introducing query features for graphs.
3Such graphs are often called heterogeneous information networks, see e.g. [Sun et al. 2011].
4A more generic technique involves applying “reification” where edges are represented as nodes (for a more
detailed discussion see [Hernández et al. 2015]).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 R. Angles et al.

Peter Sellers

Lionel Mandrake

plays

Merkin Muffley

plays

Dr. Strangelove

movie

movie

18 minutes

34 minutes

screentime

screentime

Fig. 2. An edge-labelled graph encoding information about actors that have acted in movies under different
roles

name = Clint Eastwood
gender = male

n1 : Person

title = Unforgiven

n2 : Movie

role = Bill
ref = IMDb

e1 : acts_in

e2 : directs

name = Anna Levine
gender = female

n3 : Personrole = Delilah
ref = IMDb

e3 : acts_in

Fig. 3. A property graph with attribute values storing information about movies.

In property graphs, both edges and nodes can be labelled. Each edge and node is
additionally associated with a unique identifier that can be used as a “hook” to asso-
ciate additional meta-information – in the form of a set of property–value pairs called
attributes – directly to that edge or node. Again, while it would be possible to instead
encode attributes and labels as additional edges, in practice, such features allow one
to directly annotate the graph without modifying its overall structure.

For example, in Figure 3 we show a graph for our movie database that includes labels
and attributes on nodes and edges. In this figure, the attributes for a node are shown in
the round rectangle below it. Thus, for example, the attributes associated to the node
with identifier n1 are name and gender, and their values are Clint Eastwood and male,
respectively. On the other hand, the edge with identifier e2 does not have any attribute.
In this model, we can directly encode multiple edges (having different identifiers) with
the same label between the same two nodes, and can extend the graph with additional
attributes on edges without having to remodel complex relations as nodes.

We now provide a formal definition of the notion of a property graph.

Definition 2.3 (Property graph). A property graph G is a tuple (V,E, ρ, λ, σ), where:

(1) V is a finite set of vertices (or nodes).
(2) E is a finite set of edges such that V and E have no elements in common.
(3) ρ : E → (V × V) is a total function. Intuitively, ρ(e) = (v1, v2) indicates that e is a

directed edge from node v1 to node v2 in G.
(4) λ : (V ∪ E) → Lab is a total function with Lab a set of labels. Intuitively, if v ∈ V

(resp., e ∈ E) and ρ(v) = ` (resp., ρ(e) = `) , then ` is the label of node v (resp., edge
e) in G.

(5) σ : (V ∪ E) × Prop → Val is a partial function with Prop a finite set of properties
and Val a set of values. Intuitively, if v ∈ V (resp., e ∈ E), p ∈ Prop and σ(v, p) = s
(resp., σ(e, p) = s), then s is the value of property p for node v (resp., edge e) in the
property graph G.

Example 2.4. For the property graph G shown in Figure 3, we have that G =
(V,E, ρ, λ, σ), where V , E, ρ, λ, and σ are as shown in Figure 4.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases A:7

V = {n1, n2, n3} E = {e1, e2, e3} σ(n1, name) = Clint Eastwood
σ(n1, gender) = male

ρ(e1) = (n1, n2) ρ(e2) = (n1, n2) σ(n2, title) = Unforgiven
ρ(e3) = (n3, n2) σ(n3, name) = Anna Levine

σ(n3, gender) = female
λ(n1) = Person λ(n2) = Movie σ(e1, role) = Bill
λ(n3) = Person λ(e1) = acts_in σ(e1, ref) = IMDb
λ(e2) = directs λ(e3) = acts_in σ(e3, role) = Delilah

σ(e3, ref) = IMDb

Fig. 4. The components of the graph G shown in Figure 3

firstName = Julie
lastName = Freud
country = Chile

n1 : Person
firstName = John
lastName = Cook

gender = male
country = Chile

n2 : Person

e1 : knows

e2 : knows

name = U2

n3 : Tag

e3 : hasFollower

content = I love U2
language = en

n4 : Poste4 : hasTag

content = Queen is awesome

n5 : Post

date = 14-09-15

e5 : likes

date = 15-03-14

e6 : dislikes

date = 23-10-15

e7 : likes

Fig. 5. A property graph storing social network data.

In our definition of a property graph, each node and edge is associated with a single
label, and at most one value for each attribute property. In some applications, it may
be useful to have multiple values in these positions. We could thus consider a vari-
ant of property graphs, which we call multi-valued property graphs, to allow multiple
labels and multi-valued attribute properties within the property graph model: in Defi-
nition 2.3, the mapping λ would then return a set of labels and σ would return a set of
values. In practice, engines may have custom policies; for example, Neo4j [The Neo4j
Team 2016] – a popular engine implementing the property graph model that we will
introduce later – allows only one label on each edge, multiple labels on nodes, and one
value on each attribute property (albeit potentially a list). In any case, we focus on the
single-valued variant of a property graph as given in Definition 2.3; whether or not λ
or σ return a single label/value or sets of labels/values is not exigent for us.

We conclude our discussion about property graphs by presenting a second real-world
example of how connected data can be modelled by using this class of graphs.

Example 2.5. A property graph representation of a (fictitious) social network is
shown in Figure 5. Each node is labelled either as Person, Post, or Tag, and each edge
is labelled either as dislikes, knows, likes, hasFollower or hasTag. Nodes with label
Person may have attributes for firstName, lastName, gender and country; nodes with
label Tag may have an attribute for name; nodes with label Post may have attributes for
content and language; and edges with label dislikes or likes may have an attribute
for date. We highlight that edge-sets {e1, e2}, {e3, e4, e5}, etc., form directed cycles.

Per the proviso in the introduction, in the following, we refer to edge-labelled graphs
and property graphs generically as graph databases. We refer to systems implementing
such a data model as graph database engines.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 R. Angles et al.

3. GRAPH PATTERNS
A variety of practical, declarative query languages have emerged in the past ten years
for interrogating instances of graph data models presented in the previous section. One
of the earliest such languages to be adopted by multiple vendors – for the purposes of
querying RDF graphs – was SPARQL (SPARQL Protocol and RDF Query Language),
which was initially standardised by the W3C in 2008 [Prud’hommeaux and Seaborne
2008], with an updated version called SPARQL 1.1 published in 2013 [Harris and
Seaborne 2013]. With respect to property graphs, perhaps the most well-known im-
plementation thereof is the Neo4j engine, whose development team released a declar-
ative query language called Cypher [The Neo4j Team 2016]. Another query language
for property graphs is Gremlin [Apache TinkerPop 2017], which forms an important
part of the Apache TinkerPop3 graph computing framework.5

Although these three query languages vary significantly in terms of style, purpose,
expressivity, implementation, etc., they share a common conceptual core, which con-
sists of two natural operations that one could imagine in the context of querying
graphs: graph pattern matching and graph navigation. In this section, we focus on
the former operation; navigation will be covered in detail in Section 4.

The simplest form of graph pattern is a basic graph pattern, which is a graph-
structured query that should be matched against the graph database. Additionally, ba-
sic graph patterns can be augmented with other (relational-like) features, such as pro-
jection, union, optional and difference. These allow for refining what sorts of matches
are allowed and, ultimately, what results are returned. We call basic graph patterns
augmented with such features complex graph patterns. Graph pattern matching is
then the evaluation of graph patterns over graph databases; it forms part of the con-
ceptual core of SPARQL, Cypher and Gremlin; it has also found use in a variety of
practical applications, including chemical structure analysis, machine learning, plan-
ning, semantic networks, and pattern recognition (see, e.g., [Bunke 2000; Aggarwal
and Wang 2010; Ogata et al. 2000; Matono et al. 2003; Milo et al. 2002]).

We begin by introducing basic graph patterns and complex graph patterns, discuss
different semantics used to evaluate them, and present concrete examples of graph
patterns in SPARQL, Cypher and Gremlin. Thereafter, we make some general remarks
on the complexity of graph pattern matching.

3.1. Basic graph patterns
At the core of query answering over graph databases is basic graph pattern matching.6
Basic graph patterns (bgps) follow the same structure as the type of graph database
they are intended to query but instead of only allowing constants, basic graph patterns
also permit variables. In other words, a bgp for querying an edge-labelled graph is just
an edge-labelled graph where variables can now appear as nodes or edge labels; a bgp
for querying property graphs is just a property graph where variables can appear in
place of any constant. A match for a bgp is a mapping from variables to constants such
that when the mapping is applied to the bgp, the result is, roughly speaking, contained

5Although SPARQL (1.1) has been officially standardised, Cypher and Gremlin have not and are subject to
change. This survey is based on Cypher/Neo4j v.3 and Gremlin/TinkerPop v.3. Issues we discuss relating to
these languages may thus change in future versions. However, given that many such systems now rely on
these languages, significant (non-backwards-compatible) changes to the core features covered here would
incur major migration costs. In revising the recent change-logs of these languages, we informally note that
the core features and semantics discussed in this survey have not changed in recent years.
6In the context of query answering over graphs, basic graph patterns are equivalent to conjunctive queries
[Abiteboul et al. 1995] without projection (which will be added later).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases A:9

within the original graph database. The results for a bgp are then all mappings from
variables in the query to constants in the database that comprise a match.

We start with an example of a bgp for an edge-labelled graph; later we will give a
more complex example involving a bgp for a property graph.

Example 3.1. Let G be the graph in Figure 1. Assume we wish to find all co-stars
in this graph. We can do this by matching the bgp in Figure 6(a), which we shall call Q,
against G. In Q, we use terms xi as variables that will match any term in the database.
On the other hand, acts_in is a constant from the set Lab that will only match edges
with the corresponding label in the original graph. The results of evaluating the bgp
Q against the graph G, which we denote as Q(G), will thus be as follows:

x1 x2 x3

Clint Eastwood Anna Levine Unforgiven

Anna Levine Clint Eastwood Unforgiven

Clint Eastwood Clint Eastwood Unforgiven

Anna Levine Anna Levine Unforgiven

Taking the first mapping as an example, in the original bgp, if we replace variable x1
by Clint Eastwood, x2 by Anna Levine and x3 by Unforgiven, we get a sub-graph of
the original graph database; thus we call this mapping a match for Q against G. The
results then consist of all such valid matches.

Though not shown in the prior example, we may also refer to specific nodes in the
bgp; for example, to find the co-stars of Clint Eastwood, we could replace the variable
x1 (or x2) with the term Clint Eastwood. Basic graph patterns may also contain cycles,
where, for example, we could also query for co-stars who are siblings.

We now look at an example of a bgp for a property graph.

Example 3.2. Let G be the property graph in Figure 5. Assume we wish to query
for things that (mutual) friends in the social network both like, where we wish to view
the first and last name of the users in question, all the details of the item(s) they both
like, and the date on which they both liked the item(s) in question. We can achieve this
by matching the bgp in Figure 6(b), which we shall call Q, against the graph G. Again,
we use terms xi as variables that will match any term in the graph database. In this
case, the results Q(G) will be as follows:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . . .
Julie Freud John Cook 14-09-15 23-10-15 Post content I love U2 n1 . . .
John Cook Julie Freud 23-10-15 14-09-15 Post content I love U2 n2 . . .
Julie Freud John Cook 14-09-15 23-10-15 Post language en n1 . . .
John Cook Julie Freud 23-10-15 14-09-15 Post language en n2 . . .

We omit the columns for variables x11–x16 for space reasons: these variables will
simply match the corresponding node ids and edge ids in a manner analogous to x10.
Please note that in the expression x8 = x9, the equality sign refers to a mapping from
the attribute name to its value (not equality between variables).

As for the previous example, if we replace the variables in Q per any of the mappings
in the results above, we find that the corresponding property graph is contained within
G, where Q(G) is again defined to contain all (and only) such matches.

Definition. More formally, let us refer collectively to the sets of terms V and Lab
from Definition 2.1 and the sets of terms V , E, Lab, Prop and Val from Definition 2.3
as constants, denoted Const. Let Var denote a set of variables. We could then define
bgps for graph databases in relation to Definition 2.1 by allowing V and Lab to contain

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 R. Angles et al.

x3

x1 x2

acts_in acts_in

(a) Example for an edge-labelled
graph

firstName =x1

lastName =x2

x10 : Person

firstName =x3

lastName =x4

x11 : Person
x12 : knows

x13 : knows

x8 =x9

x16 : x7

date =x5

x14 : likes

date =x6

x15 : likes

(b) Example for a property graph

Fig. 6. Two example basic graph patterns: 6(a) applies to the graph database depicted in Figure 1 while
6(b) applies to the property graph depicted in Figure 5

variables, and likewise we could define bgps for property graphs in relation to Defini-
tion 2.3 by allowing V , E, Lab, Prop and Val to contain variables. For brevity, we skip
repetitive definitions and instead continue with some quick examples.

Example 3.3. For the bgp Q shown in Figure 6(a), as per Definition 2.1, we can
denote Q = (V,E), where:

V = {x1, x2, x3} , E = {(x1, acts_in, x3), (x2, acts_in, x3)}

In this case, xi ∈ Var for 1 ≤ i ≤ 3, while acts_in ∈ Const.

Example 3.4. For the bgp Q shown in Figure 6(b), as per Definition 2.3, we can
denote Q = (V,E, ρ, λ, σ), where:

V = {x10, x11, x16} E = {x12, x13, x14, x15} σ(x10, firstName) = x1
σ(x10, lastName) = x2

ρ(x12) = (x10, x11) ρ(x13) = (x11, x10) σ(x11, firstName) = x3
ρ(x14) = (x10, x16) ρ(x15) = (x11, x16) σ(x11, lastName) = x4

σ(x14, date) = x5
λ(x10) = Person λ(x12) = knows σ(x15, date) = x6
λ(x11) = Person λ(x13) = knows σ(x16, x8) = x9
λ(x16) = x7 λ(x14) = likes σ(x16, x8) = x9

λ(x15) = likes

As before, xi ∈ Var for 1 ≤ i ≤ 16, and all other domain terms are in Const.

Evaluation. Evaluating a bgp Q against a graph database G corresponds to listing
all possible matches of Q with respect to G (as per Examples 3.1 & 3.2). More formally,
we can define a match as follows.

Definition 3.5 (Match). Given an edge-labelled graph G = (V,E) and a bgp Q =
(V ′, E′), a match h of Q in G is a mapping from Const ∪ Var to Const such that:

(1) for each constant a ∈ Const, it is the case that h(a) = a; that is, the mapping maps
constants to themselves; and

(2) for each edge (b, l, c) ∈ E′, it holds that (h(b), h(l), h(c)) ∈ E; this condition imposes
that (a) each edge of Q is mapped to an edge of G, and (b) the structure of Q is
preserved in its image under h in G (that is, when h is applied to all the terms in
Q, the result is a sub-graph of G).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases A:11

We leave implicit the analogous definition for property graphs since the principle is
the same: a mapping h maps constants to themselves and variables to constants; if the
image of Q under h is contained within G, then h is a match (see Example 3.2).

In technical terms, a match h corresponds to a homomorphism from Q to G (see, e.g.,
[Barceló 2013]), whereby multiple variables in Q can map to the same term in G, as
was the case in Example 3.1 where the latter two matches mapped variables x1 and x2
to the same term. In some cases, however, it may be desirable to require that variables
map to distinct terms, where these latter two matches would be dropped; in other
words it may be desirable to restrict h to be an injective (i.e., one-to-one) mapping,
in which case the matching process corresponds to the well-known notion of subgraph
isomorphism (see, e.g., [Ullmann 1976; Fan 2012]). But this may be too strict in certain
applications, where, for example, it may be desirable to allow multiple label variables
to match one label, but to enforce that node and/or edge ids are kept distinct (with
the intuition that nodes and edges represent the structure of the graph, and labels are
simply annotations on that structure). These preferences lead to different semantics
for the evaluation of a bgp Q over a graph database G, as explained next:

(1) Homomorphism-based semantics: This is the unconstrained semantics: no addi-
tional restriction is imposed on the matches h of Q in G other than the base condi-
tions from Definition 3.5. The evaluation ofQ againstG then consists of all possible
homomorphisms from Q to G. Since homomorphism-based approach corresponds
to the familiar semantics of select-from-where queries in relational databases, and
since it forms the basis for the other, more restrictive semantics of bgps, it is often
studied in the theoretical community (see, e.g., [Calvanese et al. 2000; Wood 2012;
Barceló 2013; Barceló et al. 2014; Reutter et al. 2015a]). There are also several pa-
pers that study implementation issues related to this semantics (see, e.g., [Cheng
et al. 2008; Zou et al. 2009; Fan et al. 2010b]) and it is currently used, for example,
by the SPARQL query language [Harris and Seaborne 2013].

(2) Isomorphism-based semantics: Under this type of semantics, the structure of the
query (in some potentially application-dependent sense) should be preserved under
the image of the permitted mappings; in more practical terms, certain types of vari-
ables are restricted to match distinct constants in the database. Since the precise
type of isomorphism – i.e., the precise type of structure preserved – may depend
on the application, this leaves us with a variety of different possible isomorphism-
based semantics, where we can highlight:
— No-repeated-anything semantics: Only injective mappings are allowed, meaning

that no two variables can be bound to the same term in a given match.
— No-repeated-node semantics: The injective restriction only applies to variables

that map to nodes (or node ids). In edge-labelled graphs, for example, it is
common to only require mappings of node variables to be injective, meaning
that multiple variables can still be mapped to the same edge labels. This “no-
repeated-node” semantics is often preferred in graph matching applications (see,
e.g., [Bunke 2000]) where no nodes in the query graph should be “collapsed” as
it would change the structure of the query graph.

— No-repeated-edge semantics: The injective restriction only applies to variables
that map to edges: in other words, “edge variables” (variables that map to edge
ids in E) must be mapped one-to-one, whereas other types of variables (for
nodes, labels, attribute properties and values) need not be injective. This seman-
tics is currently used by the Cypher query language [The Neo4j Team 2016].

Example 3.6. In order to illustrate the differences between these semantics, let G
be the property graph of Figure 3 and Q the following basic graph pattern:

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 R. Angles et al.

title = Unforgiven

x1 : Movie

name =x5

x4 : Person
x2 : x3 name =x9

x8 : Person
x6 : x7

From evaluating Q(G), we have the following (unrestricted) results:

x1 x2 x3 x4 x5 x6 x7 x8 x9

n2 e2 directs n1 Clint Eastwood e3 acts_in n3 Anna Levine

n2 e3 acts_in n3 Anna Levine e2 directs n1 Clint Eastwood

n2 e1 acts_in n1 Clint Eastwood e3 acts_in n3 Anna Levine

n2 e3 acts_in n3 Anna Levine e1 acts_in n1 Clint Eastwood

n2 e2 directs n1 Clint Eastwood e1 acts_in n1 Clint Eastwood

n2 e1 acts_in n1 Clint Eastwood e2 directs n1 Clint Eastwood

n2 e1 acts_in n1 Clint Eastwood e1 acts_in n1 Clint Eastwood

n2 e2 directs n1 Clint Eastwood e2 directs n1 Clint Eastwood

n2 e3 acts_in n1 Anna Levine e3 acts_in n1 Anna Levine

All matches are valid under the homomorphism-based semantics. Only the first two
matches would be permitted under the no-repeated-anything semantics since the lat-
ter seven matches all map multiple variables to the same term. Only the first four
matches would be valid under the no-repeated-node semantics since in the latter five
matches, the “node variables” x4 and x8 map to the same node. Only the first six
matches would be valid under the no-repeated-edge semantics since in the latter three
matches, the “edge variables” x2 and x6 map to the same edge.

As the example suggests, the appropriate selection of semantics may vary from ap-
plication to application: no one semantics fits all.

While some of the previous semantics may restrict the duplication of terms within
a single match – namely the isomorphism-based semantics – we can also consider
an orthogonal choice of semantics with respect to duplicate matches in the result of
evaluating a bgp Q over a graph database G, as follows:

— Set semantics: Q(G) is defined as a set of matches; in other words, the result of
evaluating Q over G cannot contain duplicate matches.

— Bag semantics: Q(G) is defined as a bag of matches; more specifically, the number
of times a match appears in the result corresponds with the number of unique map-
pings that witness the match.

In fact, on the level of bgps, duplicate matches cannot occur, and hence the set and
bag semantics are equivalent. However, when we later extend bgps with features such
as projection, union, etc., duplicate matches can occur, distinguishing both semantics.

We can then consider, for example, homomorphism-based set semantics, or
isomorphism-based bag semantics, and so forth. Since in much of our discussion it
will be inessential which underlying semantics we use for evaluating bgps, we may
refer to Q(G) as the evaluation of bgp Q over a graph database G in a generic manner,
where we assume a homomorphism-based set semantics unless otherwise stated.

3.2. Complex graph patterns
In terms of traditional relational operations, basic graph patterns (bgps) cover the
natural join, and selection based on equality (since constants can be embedded into
a bgp). Complex graph patterns (cgps) extend bgps with further traditional relational
operations – namely projection, union, difference, optional (aka. left-outer-join) and
filter (which covers selection). We will now go through each of these features in turn.

Projection. We call the set of variables for which Q(G) potentially returns matches
the output variables of the graph pattern Q (which is independent of G). For a bgp, this

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases A:13

is always the set of all variables in a query. However, projection allows for selecting
a subset of the output variables of a graph pattern as the new output variables: it
allows for stating which variables are deemed relevant in the evaluation of a cgp. For
instance, in Example 3.6, to retrieve only the names of actors who starred together in
Unforgiven – e.g., for a user who is uninterested in node or edge ids – we can project
variables x5 and x9; other columns will then be simply omitted from the results. As
expected, this operator is present in all practical query languages for graphs, often
using the projection keyword SELECT as used by SQL.

Join. While the join of two bgps can be easily expressed as another bgp (under
homomorphism-based semantics), more complex graph patterns or different seman-
tics require the explicit use of this operator. This corresponds to the usual relational
join (more specifically, a natural join) over the queries that are defined by two graph
patterns Q1 and Q2. The output variables of this join corresponds to the union of the
output variables of Q1 and Q2, and its evaluation contains all matches that can be ob-
tained by joining a match in the evaluation of Q1 with a match in the evaluation of Q2.
More specifically, two such matches can be joined when they take the same values for
the variables that are shared by the output variables of Q1 and Q2; in this case, we say
that the matches are compatible. An explicit join is essential in any query language
that goes beyond bgps to combine results from different operations.

Union and difference. Let Q1 and Q2 be two graph patterns. The union of Q1 and
Q2 is a complex graph pattern whose evaluation is defined as the union of the evalua-
tions of Q1 and Q2; for example, in a movie database such as the one from Figure 3, one
could use union to find the movies in which Clint Eastwood acted or which he directed.
The difference of Q1 and Q2 is also a complex graph pattern whose evaluation is de-
fined as the set of matches in the evaluation of Q1 that do not belong to the evaluation
of Q2; for example, one could use difference to find the movies in which Clint Eastwood
acted but did not direct. Computing the union of two sets of matches is rather simple
in computational terms, and as expected most systems implement the union operator.
However, difference is computationally more difficult for certain evaluation problems
and as such some systems prefer to leave its implementation out. In some other cases,
the implementation of the difference operator has been delayed for future revisions
of the language, as was the case for SPARQL, where an explicit difference operator,
called MINUS, was only introduced in SPARQL 1.1 [Harris and Seaborne 2013].7

Optional. This operator is based on the join of two graph patterns Q1 and Q2, but
instead of dismissing those matches in the evaluation of Q1 that cannot be joined with
a match in the evaluation of Q2, it keeps them in the result in order to maximise the
amount of information retrieved. This feature is particularly useful when dealing with
incomplete information, or in cases where the user may not know what information is
available. For example, in the context of Figure 5, information relating to the gender
of users is incomplete but may still be interesting to the client, where available. Let us
assume that the client wishes to retrieve users that follow the U2 tag, where available,
to find out what their genders are. Using a natural join, users such as Julie Freud that
do not have an explicit gender would be excluded from the results. But instead by us-
ing optional, users without a gender will be returned and the value for gender in the
corresponding match will simply be left undefined/blank. This operation, then, sup-
ports partial answers over incomplete data. In relational terms, the optional operator

7We briefly note that SPARQL supports a variant of UNION and MINUS where, if the output of the base
patterns Q1 and Q2 differ, then compatible matches are unioned or removed, respectively [Pérez et al. 2009;
Angles and Gutierrez 2016]. In the case of union, this may create partial matches.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 R. Angles et al.

x1 x3 x2acts_in acts_in

Person

type

Person

type

Unforgiven

title

Movie

type

(a) Example for an edge-labelled graph

title = Unforgivenx1 : Person x2 : Person

x3 : Movie

x4 : acts_in x5 : acts_in

(b) Example for a property graph

Fig. 7. Two versions of a basic graph pattern to retrieve all pairs of co-stars for the movie Unforgiven: one
for a graph database and one for a property graph

corresponds to the left-outer join [Galindo-Legaria and Rosenthal 1997]. The optional
operator has been present in SPARQL since the original version [Prud’hommeaux and
Seaborne 2008; Pérez et al. 2009], and is also included, for example, in the Cypher
query language [The Neo4j Team 2016].

Filter. Users may wish to restrict the matches of a cgp over a graph database G
based on some of the intermediate values returned using, e.g., inequalities, or other
types of expressions. For instance, with respect to Example 3.2, a client may be inter-
ested in finding things that mutual friends both liked during October 2015, in which
case, the client could apply a filter on the cgp of the following form:

01-10-15 ≤ x5 ≤ 31-10-15 AND 01-10-15 ≤ x6 ≤ 31-10-15

Applying a filter over a graph pattern does not change its output variables. In general,
the filter expression covers the usual conditions permitted by the selection relational
operator, including inequalities; boolean connectives such as AND, OR or NOT; etc. How-
ever, while basic filter operators are present in some form for all practical graph-based
query languages, in certain languages a wide range of expressions is provided to sup-
port complex filtering criteria, including regular expressions over strings, arithmetic
operators, casting, etc. We give some examples in the following section.

3.3. Graph patterns in practice
We now take a closer look at how graph patterns are applied in three practical query
languages: SPARQL, Cypher and Gremlin. We choose these languages because they
are the most widely-used query languages in practice but offer significant differences:
SPARQL operates over RDF graphs; Cypher is designed to operate over property
graphs as defined previously; meanwhile, Gremlin is more imperative in nature than
the other two, and is geared more towards graph traversal than graph pattern match-
ing. Given that each of these three languages is associated with lengthy documenta-
tion, in the following our goal is not to be complete in discussing the graph pattern
matching features of all three engines, but rather to give a quick comparative impres-
sion of each language through examples (for which we will use the bgps depicted in
Figure 7) and to highlight and contrast some important aspects.

SPARQL. SPARQL is a declarative language recommended by the W3C for query-
ing RDF graphs [Prud’hommeaux and Seaborne 2008; Harris and Seaborne 2013]. The
basic building blocks of SPARQL queries are triple patterns, which are RDF triples

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases A:15

:Clint_Eastwood :Unforgiven :Anna_Levine
:acts_in

:directs
:acts_in

:Person

:type

:Person

:type

"Unforgiven"

:title

:Movie

:type

Fig. 8. RDF graph extending the edge-labelled graph of Figure 1

where the subject, object or predicate may be a variable (variables in SPARQL typi-
cally start with the symbol ‘?’). Several triple patterns can be combined (conjunctively)
into a basic graph pattern. On top of basic graph patterns, SPARQL also supports all
of the complex graph pattern features discussed previously (and more besides). The
evaluation of bgps in SPARQL is done following homomorphism-based bag semantics.
In the following, we will use Figure 8 as our example RDF data.

Example 3.7. The following SPARQL query represents a complex graph pattern
that combines the basic graph pattern of Figure 7(a) with a projection that asks to
only return the co-stars and not the movie identifier:

PREFIX : <http://ex.org/#>
SELECT ?x1 ?x2
WHERE {

?x1 :acts_in ?x3 . ?x1 :type :Person .
?x2 :acts_in ?x3 . ?x2 :type :Person .
?x3 :title "Unforgiven" . ?x3 :type :Movie .
FILTER(?x1 != ?x2)

}

Recalling that constants in RDF graphs can be IRIs, the purpose of the PREFIX state-
ment is to define a shortcut for a namespace under which constants appear; since
prefixes are inessential to our discussion, we will henceforth leave them implicit. In
the SELECT clause, we specify the variables we wish to project as output. The WHERE
clause then captures the basic graph pattern of Figure 7(a): it contains six triple pat-
terns (delimited by periods) that correspond to the edges of Figure 7(a). Additionally,
since the semantics of SPARQL evaluation is homomorphism-based, we add a FILTER
to ensure that we do not match cases where ?x1 and ?x2 map to the same person.

Applied to Figure 8, this query would thus return:

?x1 ?x2
:Clint_Eastwood :Anna_Levine
:Anna_Levine :Clint_Eastwood

Other matches for the bgp are removed by the filter and ?x3 is projected away.

The previous example shows how bgps, projection and filter are supported in
SPARQL. We now look at some brief examples for the remaining cgp features that
are all based on the graph database of Figure 8.

Example 3.8. We start with an example of a union to find movies that Clint East-
wood has acted or directed in.

SELECT ?x
WHERE {{ :Clint_Eastwood :acts_in ?x . } UNION { :Clint_Eastwood :directs ?x . }}

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 R. Angles et al.

Both patterns to the left and right of the UNION will be evaluated independently and
their results unioned. This will return :Unforgiven; in fact, this result will be returned
twice since SPARQL, by default, adopts a bag semantics.

Example 3.9. We could use difference to ask for people who acted in the movie Un-
forgiven but who did not (also) direct it:
SELECT ?x
WHERE {{ ?x :acts_in :Unforgiven . } MINUS { ?x :directs :Unforgiven . }}

Any match for the left side of the MINUS that is compatible with a match from the right
side will be removed. Hence, this query will return :Anna_Levine.

Example 3.10. Using optional, we could ask for movies that actors have appeared
in, and any other participation they had with the movie besides acting in it:
SELECT ?x1 ?x2 ?x3
WHERE {{ ?x1 :acts_in ?x2 .} OPTIONAL { ?x1 ?x3 ?x2 . FILTER(?x3 != :acts_in) }}

This will return:
?x1 ?x2 ?x3
:Clint_Eastwood :Unforgiven :directs
:Anna_Levine :Unforgiven

A result is still returned for :Anna_Levine even though she had no other participation
in the movie; instead the relevant column is left blank for that result.

In the latter example, we show how optional and filter can be combined. Of course,
it is also possible to combine these features in other ways to form increasingly more
complex graph patterns, for example, to find movies Clint Eastwood has neither acted
nor directed in, or to find his co-stars in those movies he did not also direct, etc.

Here we have provided a few brief examples of the most notable features for graph
patterns that SPARQL supports. However, the list of graph pattern features we cover is
far from complete, where for example SPARQL 1.1 now supports a wide range of FILTER
expressions, variable assignments, arithmetic operations, conditionals, federation, and
so forth. Likewise, rather than operate over a single graph, SPARQL operates over
collections of graphs, called “Named Graphs”, which allow for selecting customised
partitions of the data over which queries should be executed. We refer to the official
standard for more details [Harris and Seaborne 2013]. Other SPARQL features such
as property paths will be covered in later sections.

Cypher. Cypher is a declarative language for querying property graphs that uses
“patterns” as its main building blocks [The Neo4j Team 2016]. Patterns are expressed
syntactically following a “pictorial” intuition to encode nodes and edges with arrows
between them. Unlike SPARQL, Cypher uses isomorphism-based no-repeated-edges
bag semantics. We again give a quick flavour of Cypher in some examples, where this
time we will consider evaluation against the property graph of Figure 3.

Example 3.11. The pattern in Figure 7(b) would be written in Cypher as:
MATCH (x1:Person) -[:acts_in]-> (:Movie {title:"Unforgiven"})

<-[:acts_in]- (x2:Person)
RETURN x1,x2

The MATCH clause specifies the bgp in question. Nodes are written inside “()” brackets
and edges inside “[]” brackets. Filters for labels can be written after the node sepa-
rated with a “:” symbol, such that (x1:Person) represents a node x1 that must match

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases A:17

to a node labelled Person. Specific values for properties can be specified within “{ }”
brackets; for instance (:Movie {title:"Unforgiven"}) represents a node that must
match to a node labelled Movie and that must have value Unforgiven for the property
title. The RETURN clause can be used to project the output variables. Implicit projec-
tion is also allowed inside the pattern itself by simply omitting some of the variables;
we have done this for the edges and the node with label Movie.

Cypher implements a no-repeated-edge semantics, and thus the evaluation of this
query against the movie graph of Figure 3 would not include the match that sends both
x1 and x2 to the node of Clint Eastwood (that is, n1) since it would require mapping to
the same edge e1 twice in a single match (and likewise for the match that sends x1 and
x2 to the node of Anna Levine). One possibility to overcome this restriction is to use
the explicit (natural) join operation of Cypher, which is invoked by simply including
additional MATCH commands. For example, if we wanted to construct a pattern that
retrieves all pairs of actors who act in the same movie, including pairs that repeat the
same actor, we would use the following Cypher statement:

MATCH (x1:Person) -[:acts_in]-> (x3:Movie {title:"Unforgiven"})
MATCH (x2:Person) -[:acts_in]-> (x3)
RETURN x1,x2

This is equivalent to the natural join of the evaluations of the two patterns given by
the two MATCH statements. In this case, we would also get the matches that send both
x1 and x2 to the node of Clint Eastwood (and likewise to the node of Anna Levine).

If a variable x stores a node or edge id, Cypher offers an “.” operator to refer to the
value of some property of x. For instance, in our previous example we can refer to the
value of the property name for the variable x1 by using notation “x1.name”, and thus use
“RETURN x1.name,x2.name" to return the actors’ names (rather than their node ids).

Cypher supports union, difference, optional, and filter. We now provide similar ex-
ample queries as for SPARQL, this time against the property graph of Figure 3.

Example 3.12. In the following query, we use union to ask for the titles of movies
that Clint Eastwood either acted in or directed:

MATCH (:Person {name:"Clint Eastwood"}) -[:acts_in]-> (x3:Movie)
RETURN x3.title
UNION ALL MATCH (:Person {name:"Clint Eastwood"}) -[:directs]-> (x3:Movie)
RETURN x3.title

Both patterns will be evaluated independently and their results unioned. The “ALL”
keyword indicates that duplicates should be returned; in this case, the title Unforgiven
will be returned twice. Omitting the “ALL” keyword, the title would appear once.

Example 3.13. We can use difference to return the people who acted in but did not
direct the movie Unforgiven:

MATCH (x1:Person) -[:acts_in]-> (x3:Movie {title:"Unforgiven"})
WHERE NOT (x1) -[:directs]-> (x3)
RETURN x1.name

The “NOT” keyword indicates the difference operator: any match for the initial pattern
that is compatible with a match for the pattern indicated after “NOT” will be removed.
In this case, Anna Levine will be returned.

Example 3.14. We now use optional and filter to find movies in which people have
acted and other ways they participated in the movie, if any.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 R. Angles et al.

MATCH (x1:Person) -[:acts_in]-> (x3:Movie)
OPTIONAL MATCH (x1) -[x4]-> (x3)
WHERE type(x4) <> "acts_in"
RETURN x1.name AS name, x3.title AS movie, type(x4) as part

In this query, the WHERE clause is a true filter expression: “<>” denotes inequality and
“type” is a built-in function to return the label of an edge. The first match will retrieve
all pairs of actors and movies, where the second optional match will check the other
edges between each such pair matching edges where the label is not acts_in.

Cypher allows the use of the operator AS in the RETURN clause to indicate that the
results of the query should be displayed under some specific names for columns. For in-
stance, the use of “x3.title AS movie” indicates that the values of the property title
of the nodes stored in the variable x3 will be displayed in a column with name movie.
Hence, the query in this example returns:

name movie part
Clint Eastwood Unforgiven directs
Anna Levine Unforgiven

Given that we use the optional matching functionality, we see that the result for the
Anna Levine node is preserved even though she only acted in the movie.

Once again, here we only provide examples of the core matching features supported
by Cypher to give a flavour of the language; we refer the interested reader to the online
documentation for further details [The Neo4j Team 2016].

Gremlin. The last language we review is Gremlin: the query language of the Apache
TinkerPop3 graph Framework [Apache TinkerPop 2017]. Although Gremlin is also
specified with the property graph model in mind, it differs quite significantly from the
previous two declarative languages and has a more “functional” feel: while SPARQL
and Cypher have obvious influences from SQL for example, Gremlin feels more like a
programming language interface.8 Likewise, its focus is on navigational queries rather
than matching patterns; however, amongst the “graph traversal” operations that it
defines, we can find familiar graph pattern matching features. Similarly to SPARQL,
Gremlin also uses the homomorphism-based bag semantics.

Example 3.15. Intuitively, Gremlin traversals give explicit instructions as to how
the graph is to be navigated. For example, to retrieve all movies where Clint Eastwood
is an actor, we first load a “graph traversal” object (labelled G here) and write:
G.V().hasLabel('Person').has('name','Clint Eastwood')

.out('acts_in').hasLabel('Movie')

The call G.V() will return the set of all nodes in the graph (V stands for “ver-
tex"). We then apply two selections on the set of nodes, where the sequence of calls
G.V().hasLabel('Person').has('name','Clint Eastwood') retrieves precisely those
nodes with label Person and name Clint Eastwood. The command out('acts_in') re-
trieves all nodes that can be reached from these latter nodes with an edge labelled
acts_in. Finally hasLabel('Movie') filters nodes not labelled with Movie.

Gremlin is most natural when expressing paths because all such patterns can be
simulated by a traversal on the graph.

8Strictly speaking, Gremlin is a functional language that includes several operators that are out of the
scope of this survey. We concentrate on querying functionalities, denoted as “graph traversals" in the doc-
umentation [Apache TinkerPop 2017]. There are various versions of Gremlin for integration with different
programming languages. Here we stick with Gremlin-Groovy.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases A:19

Example 3.16. The following Gremlin traversal allows us to obtain all co-actors of
Clint Eastwood:
G.V().hasLabel('Person').has('name','Clint Eastwood')

.out('acts_in').hasLabel('Movies')
.in('acts_in').hasLabel('Person')

This query navigates through the movies of Clint Eastwood as before, but then con-
tinues: the command in('acts_in') looks for nodes that are connected by an edge la-
belled acts_in in the opposite direction as the traversal, and then hasLabel('Person')
again filters out any nodes that are not of label Person.

Nevertheless, Gremlin does include a way of specifying more general bgps (includ-
ing branches and cycles): traversals are used to encode the structure, but nodes can
be cross-referenced at different points using variables specified by means of the as
command, while the pattern is then evaluated using the match command.

Example 3.17. To illustrate a more complex example, we show how the bgp in Fig-
ure 7(b) can be expressed in Gremlin. The following example additionally includes an
explicit filter to ensure that x1 does not map to the same constant as x2 in any match,
and also adds a projection to return only results for the x1 and x2 variables (in this
case returning only the co-stars, not the movie they co-starred in).
G.V().match(

__.as('x1').hasLabel('Person').out('acts_in').hasLabel('Movies').as('x3'),
__.as('x3').has('title','Unforgiven').in('acts_in').hasLabel('Person').as('x2'),
.where('x1', neq('x2'))

).select('x1','x2')

Again G.V() returns all vertices in the graph. The match command then takes a list of
arguments; in this case, the command takes three arguments that specify two inner
traversals and a filter. The ‘__’ operator means that the subsequent operation is applied
on the parent traversal one level up, meaning that, for example, “__as('x1')” will
apply over all nodes in G.V(). The ‘as’ command declares a variable; however, rather
than “__as('x1')” binding all nodes to variable x1, the entire traversal acts as a bgp,
meaning that subsequent steps from a node in x1 must be satified for the variable to
match that node. Each inner traversal can thus be seen as a tree-shaped bgp. These
inner traversals are then joined to create a more complex bgp that may contain cycles.
In the above example, the two inner traversals are accompanied by a where command
that calls a not-equals (neq) filter to ensure that x1 and x2 are not bound to the same
result. The select command (outside match) then performs a projection to select the
output of the query: only the co-stars, not the movie.

While Gremlin supports bgps, filters and projection, its main focus is on navigational
queries, which will be discussed in Section 4. The current version has limited support
for declarative-style operators for complex graph patterns. While a “union” command
exists, and difference can be emulated by the “drop” command, the current version
does not have explicit support for optional. We will not go into details but instead refer
the interested reader to the online documentation [Apache TinkerPop 2017].

3.4. The complexity of evaluating graph patterns
To understand the computational complexity of working with a query language we
consider the following evaluation problem: given a query Q in this language, a possi-
ble answer h and a graph database or property graph G, verify whether h is an an-
swer to Q over G; that is, verify whether h ∈ Q(G). The most basic fragment of graph
query languages that needs to be considered is the fragment consisting of bgps and

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 R. Angles et al.

projection, which corresponds to conjunctive queries in relational databases [Abite-
boul et al. 1995]. The evaluation problem for this fragment is NP-complete for the
homomorphism-based semantics and the three versions of the isomorphism-based se-
mantics considered in Section 3.1; NP-hardness can be proven for the former by re-
duction from the graph homomorphism problem [Hell and Nesetril 2004], while for
the latter, it can be established by reduction from the subgraph isomorphism problem
[Ullmann 1976]. All of these results hold under set or bag semantics since the question
of “h ∈ Q(G)?” is not affected by such a choice of semantics.

In practice the size of the query Q is typically much smaller than the size of the
databaseG, so it is common practice to assign different roles to the two when analysing
query evaluation. This motivated the introduction of the notion of data complexity
[Vardi 1982], in which Q is assumed to be fixed and the input is given by G only; this
is in contrast to the more general notion of combined complexity, which is defined with
respect to the input query and the database (as in the previous paragraph). Under
data complexity, evaluation of queries consisting of bgps and projection can not only be
solved in polynomial time, but also can be carried out in logarithmic space for all the
semantics considered in Section 3.1 [Abiteboul et al. 1995]. Although data complexity
might seem a bit simplistic at first sight, it has proven useful for understanding the
cost of evaluating small queries over datasets of moderate size.

Furthermore, in practice one is often interested in matching simple bgps that are
not necessarily that difficult to evaluate. Both the graph theory and the database com-
munities have dedicated vast amounts of work to identifying classes of patterns for
which the matching problem can be efficiently solved, even in combined complexity.
One of the main results here indicates that, intuitively speaking, the more cyclical the
underlying structure of the graph pattern (i.e., the less it resembles a tree), the more
difficult the query is to evaluate; this notion of cyclicity is captured formally by a no-
tion call treewidth, where we refer the reader to, e.g., [Chekuri and Rajaraman 2000;
Dalmau et al. 2002; Gottlob et al. 2016] for detailed discussion.

Going beyond the fragment covering bgps and projection, the combined complexity of
the evaluation of cgps has been extensively studied for SPARQL. To recap the main re-
sults, let us first consider SPARQL under set semantics. If only projection, join, union
and filter are allowed in the language, then the combined complexity of the evalua-
tion problem remains NP-complete. If difference and optional are also allowed, then
SPARQL has the same operators as relational algebra, so the combined complexity is
PSPACE-complete [Vardi 1982]. Interestingly, it can be proven that the MINUS opera-
tor of SPARQL can be simulated using optional, filter and join [Angles and Gutierrez
2008], so the complexity of the evaluation problem remains PSPACE-complete without
MINUS. Moreover, the same complexity bound can be obtained if only join and optional
are allowed [Schmidt et al. 2010], but in this case the proof is not based on an ex-
pressiveness argument. For the case of SPARQL under bag semantics, the combined
complexity of the evaluation problem remains PSPACE-complete. To the best of our
knowledge, the complexity of cgps has not been studied for the cases of Cypher and
Gremlin, thus opening interesting opportunities for future investigation. We further
discuss open questions regarding the complexity of Cypher and Gremlin in Section 5.

4. NAVIGATIONAL QUERIES
While graph patterns allow for querying graph databases in a bounded manner, it
is often useful to provide more flexible querying mechanisms that allow to navigate
the topology of the data. One example of such a query is to find all friends-of-a-friend
of some person in a social network such as the one in Figure 5. Here we are not only

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases A:21

interested in immediate acquaintances of a person, but also the people she might know
through other people; namely, her friends-of-a-friend, their friends, and so on.

Queries such as the one above are called path queries, since they require us to navi-
gate through the graph using paths of potentially arbitrary length. Path queries have
long been established as the core of navigational querying in graphs by the research
community [Wood 2012; Barceló 2013] and are widely supported in graph database
engines [The Neo4j Team 2016; Harris and Seaborne 2013; Apache TinkerPop 2017].
Furthermore, path queries have found applications in areas such as the Semantic Web
[Alkhateeb et al. 2009; Pérez et al. 2010; Paths 2009], provenance [Holland et al. 2008]
and route-finding applications [Barrett et al. 2000], amongst others. It is therefore nat-
ural to add path queries to basic graph patterns as the core of graph querying. We call
such queries navigational queries, and in this section we discuss how they can be used
to query graph databases. We start with path queries.

4.1. Path Queries
Paths are the most basic navigational object in a graph database. The most fundamen-
tal type of path query is that of path existence, which asks if there is some directed
path between two nodes in a property graph, irrespective of edge labels; in some cases,
one or all such paths can be additionally returned. This is a foundational notion re-
lated to the problems of reachability and transitive closure in directed graphs [Yu and
Cheng 2010], and for this reason it has been well studied by the theoretical community.
However, in practice, one often needs path queries that impose additional constraints
on the path that is to be computed, such as restrictions on edge labels. The transitive
friend-of-a-friend relation in social networks is such an example: we are interested in
paths composed only of edges labelled with knows (and not likes or any other label).

Definition. We can define a path query as having the general form P = x
α−→ y,

where α specifies conditions on the paths we wish to retrieve and x and y denote the
endpoints of the path. The endpoints x and y can be variables, or specific nodes, or a
mix of both, or even the same node (in which case we are specifying a cycle). For the
expression α, we can use the symbol ∗ to signify that we are only interested in the
existence of a path connecting two nodes without imposing any further constraints;
otherwise, there are a variety of formalisms under which α can express more complex
path constraints [Cruz et al. 1987; Mendelzon and Wood 1989; Barceló et al. 2012a; Cal-
vanese et al. 2003; Libkin et al. 2016], but probably the most famous is that of regular
expressions [Hopcroft et al. 2003] defined over the set Lab of edge labels. When used as
a path constraint, a regular expression specifies all paths whose edge labels, when con-
catenated, form a word in the language of the regular expression. Intuitively speaking,
regular expressions allow for concatenating paths, for applying a union/disjunction of
paths, and for applying a path zero or many times. Path queries specified using regular
expressions are commonly known as Regular Path Queries (RPQs).

Example 4.1. The (transitive) friend-of-a-friend relationship in our social network
can be expressed via the following regular path query (RPQ):

P := x
knows+−−−−→ y.

Here the symbol ‘+’ denotes “one-or-more”, where the regular expression knows+ is used
to specify all paths formed from a sequence of one-or-more forward-directed edges with
the label knows.9 Thus the endpoints x and y would be matched to any two nodes in

9Note that knows+ is equivalent to knows · knows∗, where ‘∗’ denotes the Kleene star (zero-or-more) and ‘·’
denotes concatenation.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 R. Angles et al.

the social network connected by such a path. Similarly, we can use the path query:

P ′ := x
knows+·likes−−−−−−−−→ y,

where ‘·’ denotes concatenation, to match nodes x and y such that x is a person and y
is a post that is liked by a (transitive) friend-of-a-friend of x. Finally we can apply a
union of paths to match the liked or disliked posts of transitive friends-of-a-friend of x:

P ′′ := x
knows+·(likes | dislikes)−−−−−−−−−−−−−−−→ y,

where the ‘|’ symbol here denotes a union.

The features of RPQs can be combined to (implicitly) support a number of other
navigational operations on graphs. For instance, the RPQ P = x

α−→ y, with

α = knows | (knows · knows) | . . . | (knows · knows · . . . · knows︸ ︷︷ ︸
k times

)

defines the friend-of-a-friend relationship up to depth k ≥ 2. Likewise, for example,
the RPQ x

Lab∗

−−−→ y, where Lab∗ is the regular expression that accepts all words over
Lab, corresponds to the path query that imposes no constraints on paths. Regardless,
we will keep using x ∗−→ y to express this query, even when talking about RPQs.

However, there are various navigational operations not supported by RPQs that
seem quite natural. RPQs are sometimes thus extended to allow further expressions.
One such extension is to allow an inverse operator a− (for a in Lab) to specify the traver-
sal of edges in a backwards direction, giving rise to Two-way Regular Path Queries
(2RPQs), which are RPQs enhanced with inverses [Calvanese et al. 2002; 2003].

Example 4.2. Consider now a movie database such as the one in Figure 3. The
following two-way regular path query (2RPQ) retrieves all co-stars in the database:

P := x
acts_in·acts_in−−−−−−−−−−−−→ y.

The expression acts_in matches a node x against a person, then the path navigates
to the movies that x starred in, and then backwards to x’s co-stars (or to x itself).
Similarly, we can use the path query:

P ′ := x
(acts_in·acts_in−)+−−−−−−−−−−−−−→ y

to compute the transitive closure of the co-star relationship; for example, if we wished
to check which actors have a finite Bacon number [Reynolds 2015] – i.e., which actors
have transitively co-starred in a movie with the actor Kevin Bacon – we could use this
pattern, setting x to Kevin Bacon and leaving y as a variable.

The need for RPQs (and their extended forms) has been long argued by the research
community [Buneman et al. 1996; Buneman 1997] and recently they have been imple-
mented in various systems; for example, extensions of RPQs form the conceptual core
of “property paths” in the SPARQL 1.1 standard [Harris and Seaborne 2013], which
have been implemented in the newest versions of various SPARQL engines [Bishop
et al. 2011; Erling 2012; Thompson et al. 2014] and have been studied by numerous
authors [Arenas et al. 2012; Losemann and Martens 2013; Fionda et al. 2015; Kostylev
et al. 2015]. Likewise in the Cypher query language [The Neo4j Team 2016], one can
find RPQ-like features. We will provide examples of the use of RPQ-like features in
such languages later in this section.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases A:23

Evaluation. To define how path queries are evaluated we need to formalise the
notion of a path over graph databases. In a property graph G, a path π is a sequence
n1e1n2e2n3 . . . nk−1ek−1nk, where k ≥ 1 and with each ei being an edge in G between
ni and ni+1. The label of the path π, denoted Lab(π), is the concatenation of its edge
labels, namely Lab(π) = a1a2 . . . ak−1, where ai is the label of ei. For example, the
sequence n1e1n2e6n5 is a path in the property graph of Figure 5. The label of the path
is the word knows · dislikes. Note that for each node n of G the sequence that consists
exclusively of n is also a path (of length zero). The label of such zero-length paths
corresponds to the empty word, denoted by ε.

To define paths in edge-labelled graphs we need to be more careful since we do
not have edge identifiers in this model, and thus we cannot give the same definition
as before. Instead, we define a path π in an edge-labelled graph G as a sequence:
n1a1n2a2n3 . . . nk−1ak−1nk, where (ni, ai, ni+1) is an edge in G for all i < k. In this case
the label is simply Lab(π) = a1a2 . . . ak−1. As in the case of property graphs, a single
node n forms a zero-length path with the label ε.

The evaluation of a path query P = x
α−→ y over G, denoted P (G), then consists of

all paths in G whose label satisfies α. For instance, if α = ∗, any path belongs to P (G),
but if α is the regular expression L, then only paths whose label belongs to L appear
in P (G).10 The set of paths matching P (G) might be infinite (when G has directed
cycles), and thus this general definition of evaluation is not computable. Later we will
see different ways in which this definition is restricted to be implemented in practice.

Example 4.3. Let G denote the property graph of Figure 5 and consider the RPQ

P = x
knows+−−−−→ y. Because of the cycle between nodes n1 and n2 in G, the number of

paths in P (G) is infinite: it contains all finite sequences of the form n1e1n2e2n1e1 · · ·

and n2e2n1e1n2e2 · · · . For the case of the RPQ P ′ = x
knows+·likes·hasTag−−−−−−−−−−−−→ y, the following

table shows a few paths in P ′(G):

n1 e1 n2 e7 n4 e4 n3

n1 e1 n2 e2 n1 e5 n4 e4 n3

n1 e1 n2 e2 n1 e1 n2 e7 n4 e4 n3

n1 e1 n2 e2 n1 e1 n2 e2 n1 e5 n4 e4 n3

...
...

...

The number of paths in P ′(G) is also infinite.

As in the case of graph patterns, different practical considerations – for example,
the possibility of having paths involving cycles – give rise to different semantics for
the evaluation for path queries, or more specifically, for which paths are included in
P (G). Next we describe the most common such forms of evaluation in practice:

(1) Arbitrary path semantics: All paths are considered. More specifically, all paths in
G that satisfy the constraints of P are included in P (G). As per Example 4.3, under
this semantics, P (G) may contain an infinite number of paths. However, while it
may not be feasible to enumerate all paths under this semantics, a user may only
be interested in whether or not such a path exists, or in the (finite) pairs of nodes
connected by such paths, etc., in which case such a semantics can be practical [Cal-
vanese et al. 2003; Wood 2012; Barceló et al. 2012a].

10From a formal point of view we can treat 2RPQs (path queries with inverses) as standard RPQs that are
evaluated over the completion of G, which is constructed by adding an edge labelled a− from v to u for each
edge labelled a from u to v. Hence from now on we will consider RPQs to always contain inverses.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 R. Angles et al.

(2) Shortest path semantics: In this case, P (G) is defined in terms of shortest paths
only, i.e., paths of minimal length that satisfy the constraint specified by P . We
may use this semantics when we want to find pairs of nodes that are linked by
some path and, for each such pair, a minimal path (or set of minimal paths of
equal length) that witness(es) this. In Example 4.3, the shortest path for P ′(G)
corresponds to the first path in the table.

(3) No-repeated-node semantics: In this case, P (G) contains all matching paths where
each node appears once in the path; such paths are commonly known as simple
paths. This interpretation makes sense in some practical scenarios; e.g., when find-
ing a route of travel, it is often not desired to have routes that come to the same
place more than once. The interaction of this interpretation with RPQs has been
studied in depth by the theoretical community [Mendelzon and Wood 1989; Arenas
et al. 2012; Losemann and Martens 2013]. In Example 4.3, only the first path for
P ′(G) would be selected since others mention a node more than once.

(4) No-repeated-edge semantics: Under this semantics, P (G) contains all matching
paths where each edge appears only once in the path. The Cypher query language
of the Neo4j engine currently uses this semantics (see Section 3.4.1. of the Cypher
Manual [The Neo4j Team 2016]). Use-cases for this semantics are similar as for
the previous one; e.g., when we want to visit some place more than once, but we do
not want to take the same route as before. In Example 4.3, the first two paths in
P ′(G) have no repeated edge, but the other paths would not be considered.

Output. As hinted at previously, a user may have different types of questions with
respect to the paths contained in the evaluation P (G), such as: Does there exist any
such path? Is a particular path π contained in P (G)? What are the pairs of nodes
connected by a path in P (G)? What are (some of) the paths in P (G)? We can categorise
such questions by what they return as results:

— Boolean: In some cases, the output of a path query may be a true/false value to as-
certain, for example, if P (G) is non-empty, or if there exists a path in P (G) between
two particular nodes, etc.

— Nodes: In some applications, we are interested in the nodes connected by specific
paths (see, e.g., [Wood 2012; Barceló 2013]). In such cases, we project from P (G) the
endpoint nodes: all pairs of nodes u and v linked by some path in P (G). Referring
back to Example 4.3, we would project from P ′(G) the node pair (n1, n3).

— Paths: In this case, some or all of the full paths are returned from P (G). For example,
if P (G) is applied with a shortest-path semantics, then we would return one or more
such shortest paths. In other cases, paths to be returned may be selected based on
more complex conditions, e.g., based on a ranking on paths; this may be useful in,
e.g., route finding applications, where some top-k “best” paths are sought.

— Graphs: Another solution – for example under arbitrary path semantics – is to offer
a compact representation of the output, e.g., in the form of another graph whose
paths are precisely the paths in the output of the query [Barceló et al. 2012a].

While the first two types of answers can be handled under, e.g., a standard relational
algebra, there is currently no consensus on how to represent paths as the output of a
query. In particular, unlike solutions to graph patterns that have a fixed-arity out-
put, paths do not have a fixed-arity, therefore we cannot directly define a mapping
from variables to constants as in the case of a bgp match. Likewise, although return-
ing graphs as queries is supported in SPARQL [Harris and Seaborne 2013] through
CONSTRUCT, graph creation is only supported as a final step, where such graphs cannot
be manipulated further by other operators.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases A:25

Sets vs. bags. In the case of queries that return a boolean value or a graph as
a result, there is no distinction between bag or set semantics. Likewise, in the case
that full paths – i.e., the complete sequence of nodes and edges in each path – are
returned, no duplicates can occur and there is no such distinction. However, if nodes
are returned, or nodes/edges are projected from a full path, then bag semantics are
distinguished from set semantics. In particular, if we consider the case where we are
returning end nodes of our path as output, when using set semantics, a pair (n, n′) will
be returned exactly once when there is at least one path in P (G) connecting n with
n′, and zero times otherwise; when using bag semantics, this now changes, and a pair
(n, n′) is returned once for each full path in P (G) connecting n with n′.

Bag semantics combined with arbitrary path semantics is problematic since the set
of paths can be infinite; thus this combination is usually not considered in the theo-
retical literature [Wood 2012; Barceló 2013]. But even when the number of paths is
guaranteed to be finite, there are still several issues with respect to high computa-
tional complexity since bag semantics implicitly requires counting paths. For example,
it is well-known that counting the number of paths without repeated nodes from node
a to node b in a graph G is a #P-complete problem [Valiant 1979], which implies that
it is as difficult as, for example, counting the number of satisfying assignments of a
propositional formula, or counting the number of Hamiltonian cycles in a graph.

This high computational complexity has a number of practical consequences. For
instance, the initial combination of bag semantics with property paths in drafts of the
SPARQL 1.1 standard required that the number of repetitions of a pair of nodes in the
answer was equal to the number of paths between them. Thus, a restriction to consider
simple paths was added to guarantee finiteness of results. Unfortunately, this gave rise
to a path counting problem with a very high complexity [Arenas et al. 2012; Losemann
and Martens 2013], which was resolved by imposing a set semantics on property paths
of the form (p)* and (p)+, avoiding the counting of paths of unbounded length. On
the other hand, Cypher maintains a bag semantics when returning nodes, where a
no-repeated-edge semantics is applied by default.

4.2. Adding paths to basic graph patterns
Now that we understand how path queries can be used to match paths and how graph
patterns can be used to match sub-graphs, we can combine them to produce a powerful
query language that allows to find more flexible matches. In particular, this language
allows to express that some edges in a graph pattern should be replaced by a path
(satisfying certain conditions) instead of a single edge.

Example 4.4. In Example 4.2, we used the query Q′ = x
(acts_in·acts_in−)+−−−−−−−−−−−−−→ y to find

actors that are connected through co-star relations to other actors, and mentioned that
this query can be used to find actors with a finite Bacon number. To make our example
more challenging, consider now that our movie database from Figure 3 is extended
to also contain bibliographical information about scientific papers and their authors.
In such a database, each node is either a movie, a person, or an article. Persons and
movies are connected as in Figure 3, while a person can also have an author edge con-
necting it to an article. In such a database we might be interested in finding people
with finite Erdős–Bacon number, that is, people who are connected to Kevin Bacon
through co-stars relations and are connected to Paul Erdős through co-authorship re-
lations. This is easily expressed using the query in Figure 9, which is a basic graph
pattern that permits (two-way) regular path queries on edges.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 R. Angles et al.

x Kevin BaconPaul Erdős (acts_in · acts_in−)+(author · author−)+

Fig. 9. A query finding the actors with a finite Erdős–Bacon number over an edge-labelled graph

firstName = Julie

x1 : Person

firstName =x3

x2 : Person

knows+

x5 : Postx4 : likes name =x8

x7 : Tag
x6 : hasTag

x9 : hasFollower

Fig. 10. A navigational graph pattern that characterises the friends of friends of Julie that like a post with
a tag she that she follows

Combining path queries with basic graph patterns (bgps) gives rise to navigational
graph patterns (ngps). In the case of edge-labelled graphs, ngps are defined similarly
as bgps: namely, they are edge-labelled graphs where nodes can be constants or vari-
ables, and the edge labels can be constants, variables, RPQs11, or the special symbol ∗
denoting an arbitrary path. Matches are defined as in the case of bgps, but now every
edge not labelled with a variable is mapped to a path. That is, if we have (b, α, c) in our
ngp, with α either ∗ or a regular expression, then our match h must satisfy that h(b) is
connected to h(c) by a path in P (G), with P being the path query x α−→ y. Note that in
order to keep the arity of matchings bounded by the size of the query, we are opting for
an existential interpretation of path expressions in ngps. That is, we are considering
the boolean output semantics for P , which only checks that there is a path in P (G) con-
necting the nodes h(b) and h(c), but does not return such a path. Navigational graph
patterns for property graphs are defined analogously, but now allowing for elements
of property graphs in nodes and edges as per Definition 2.3. In particular, if the label
α of the edge is ∗ or a regular expression, the end nodes of this edge have to be in the
answer to the path query x α−→ y over G.

Example 4.5. Coming back to the social network from Figure 5, we might be in-
terested in finding all friends of friends of Julie that liked a post with a tag that Julie
follows. The navigational graph pattern in Figure 10 expresses this query over the
property graph of Figure 5.

Navigational graph patterns have received a lot of attention in the theoretical litera-
ture under the name conjunctive regular path queries (CRPQs) [Consens and Mendel-
zon 1990; Florescu et al. 1998; Calvanese et al. 2003; Barceló et al. 2014]. A natural
extension of ngps is to consider complex navigational graph patterns (cngps) by taking
the closure of ngps under the relational operations of selection, projection, join, union,
difference, and optional, as presented in Section 3. Some other variants and extensions
of cngps allowing to compare different paths in a graph have also been considered in
the past [Barceló et al. 2012a; Barceló and Muñoz 2014; Figueira and Libkin 2015]. As
we will see later in Section 4.3, cngps then form the core of languages such as SPARQL.

Example 4.6. To give a brief idea of the expressivity of cngps, consider the ngp of
Example 4.5 and assume we project x5: the ids of the posts liked by friends-of-friends
of Julie and that have a tag that she follows. Let’s call these results the “recommended

11In the context of ngps we identify the expression defining an RPQ with the RPQ itself.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases A:27

posts” for Julie. Now consider a copy of the same pattern to find the recommended
posts for John. We could use the union of these patterns to find posts recommended for
Julie or John, or intersection to find posts recommended for both, or difference to find
posts recommended for Julie but not John, or filter dates to find more recent posts, and
so forth. All such queries can then be expressed as cnpgs.

For the navigational languages we have seen thus far, paths are the only form of
recursion allowed. However, to express certain types of queries, we may require more
expressive forms of recursion. In the online appendix we present three families of such
languages, namely, nested regular expressions [Pérez et al. 2010; Barceló et al. 2012],
regular data path queries [Libkin and Vrgoč 2012], and Datalog extensions [Consens
and Mendelzon 1990; Reutter et al. 2015a].

4.3. Navigational queries in practice
Next we show examples of how navigational queries can be expressed in practical
query languages. As before we illustrate this using SPARQL, Cypher and Gremlin.

SPARQL. Since version 1.1 [Harris and Seaborne 2013], SPARQL permits the use
of property paths, which are an extended form of regular expression that, beyond usual
RPQs, also allow inverses and a limited form of negation [Kostylev et al. 2015]. As a
consequence, we can express any path query from Example 4.2 using SPARQL 1.1.

Example 4.7. Consider the RDF graph depicted in Figure 8. To find all pairs of
actors who have finite collaboration distance (i.e. the query Q′ from Example 4.1) we
can use the following SPARQL query:
SELECT ?x ?y
WHERE { ?x (:acts_in/^:acts_in)* ?y }

Here the symbol ‘/’ is used to denote concatenation and ‘^’ to denote the inverse of
an edge label. The Kleene closure is given by ‘*’ as before. Note that if we wanted to
extract the actors with a finite Bacon number from our graph database we can just
replace the variable ?x with the constant :Kevin_Bacon.

In one aspect, SPARQL goes beyond RPQs and allows for a (very) limited form of
negation called negated property sets [Kostylev et al. 2015]. This is done by allowing
subexpressions of the form !{e1, . . . , en} inside property paths, which will match to all
pairs of nodes connected by some edge whose label is not in the set {e1, . . . , en}. Apart
from ordinary labels, negated property set can also include inverse-edge labels.

Example 4.8. Consider the RDF graph depicted in Figure 8 and the following
SPARQL query with a negated property-set
SELECT ?y
WHERE { :Clint_Eastwood (!{:type,:directs})* ?y }

This query will match :Unforgiven (the IRI) and "Unforgiven" (the title string) for
?y. Here, :Anna_Levine is not included since the negated property-set does not include
any inverse. However, once any inverse is added, then inverse edges are included:
SELECT ?y
WHERE { :Clint_Eastwood (!{:type,:directs,^directs})* ?y }

This query will additionally return :Anna_Levine since now inverse edges are also tra-
versed. In a similar manner to the first query, if the negated property set only includes
inverses, then only inverse edges are traversed.

Adding this limited form of negation to the RPQ-style features of property paths
does not affect the complexity of SPARQL query evaluation [Kostylev et al. 2015].

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 R. Angles et al.

As aforementioned in the discussion on set vs. bag semantics in Section 4.1, in a
draft of the SPARQL 1.1 standard, the original semantics of property paths was based
on simple paths with a bag semantics. However, since it was shown that such a seman-
tics quickly renders query evaluation impractical [Arenas et al. 2012; Losemann and
Martens 2013], the semantics was changed. Now, in order to evaluate any query con-
taining the transitive closure operator (* or +), SPARQL uses a set semantics, looking
for pairs of nodes connected by any path whose label belongs to the language of the
regular expression specifying the query. Otherwise, if a property path can be rewritten
as a bgp (with projection), SPARQL instead uses the bag semantics defined for bgps
(see [Harris and Seaborne 2013, §9.3] for more details).

Similarly, SPARQL can also express navigational graph patterns (ngps).

Example 4.9. The ngp from Example 4.4 – find all people with a finite Erdős–Bacon
number – can be expressed in SPARQL as:
SELECT ?x
WHERE { ?x (:acts_in/^:acts_in)* :Kevin_Bacon . ?x (:author/^:author)* :Paul_Erdos . }

This query is a conjunction of two RPQs, where the symbol . denotes conjunction.

Likewise, SPARQL can express complex navigational graph patterns (cngps).

Example 4.10. Referring back to Example 4.6, we can express an RDF version of
the query for the posts recommended to Julie but not to John as follows:
SELECT ?x
WHERE {
{
{ :Julie :knows+/:likes ?x . ?x :hasTag/:hasFollower :Julie . }
MINUS

{ :John :knows+/:likes ?x . ?x :hasTag/:hasFollower :John . }
}

This query involves the difference of two cgps, creating a cngp.

Cypher. While not supporting full regular expressions, Cypher still allows transi-
tive closure over a single edge label in a property graph. On the other hand, since it is
designed to run over property graphs, Cypher also allows the star to be applied to an
edge property/value pair; however, this is again limited to a single repeated label/value.

Example 4.11. To compute the friend-of-a-friend relation in Cypher over the graph
from Figure 5, we can use the following expression:
MATCH (x1:Person) -[:knows*]-> (x2:Person)
RETURN x1,x2

This expression selects pairs of nodes that are linked by a path completely labelled by
knows. To do this, it applies the star operator ∗ over the label knows.

Currently Cypher does not allow to apply the recursive operator ∗ over more complex
expressions; thus, for example, we are not able to query for actors with a finite Bacon
number over the property graph from Figure 3 (without changing the data to, e.g., give
explicit co-star relations). This might change, however, in the near future.

Recall that Cypher uses the no-repeated-edge semantics for cgps; by default, Cypher
uses the same semantics for path queries, thus returning all pairs of nodes connected
by a path which does not repeat any edges. In fact, Cypher uses a bag semantics, so
each pair of nodes will be duplicated for every such path connecting them in the data.

Example 4.12. Consider the graph from Figure 5 and the following query looking
for any path (of arbitrary length) between two nodes:

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases A:29

MATCH (x1) -[*]-> (x2)
RETURN x1,x2

Here the operator * signifies that the path is of arbitrary length and there is no re-
striction on edge labels. The output of this query will contain the pair (n1, n4) twice, as
there are two distinct paths (that do not repeat an edge) from the node n1 representing
Julie, to the node n4 representing the post with the content I love U2.

However, Cypher also allows for returning a single shortest path connecting two
nodes, or all shortest paths connecting them, allowing the user to declaratively change
the semantics for evaluating paths within the query.

Example 4.13. If we wanted to find friends of friends of Julie in the example above
and return only the shortest witnessing path, we could use the following query:

MATCH (julie:Person {firstname:"Julie"}),
p = shortestPath((julie) -[:knows*]-> (x:Person))
RETURN p

This will return a single shortest witnessing path. If we wanted to return all shortest
paths, we could replace “shortestPath” with “allShortestPaths”.

In Section 3 we have seen how to specify basic graph patterns using Cypher. A re-
stricted form of navigational patterns – only allowing the star operator on edge labels
– are then supported by allowing path expressions inside basic patterns.

Example 4.14. Coming back to the social network from Figure 5, if we want to find
all friends-of-friends of Julie that liked a post with a tag that Julie follows, we can use
the following Cypher query:

MATCH (x1:Person {firstName:"Julie"}) -[:knows*]-> (x2:Person)
MATCH (x2) -[:likes]-> () -> [:hasTag] -> (x3)
MATCH (x3) -[:hasFollower]-> (x1)
RETURN x2

The first MATCH clause provides a path expression, which when joined with the bgps
expressed in the latter two MATCH clauses, forms a navigational graph pattern (ngp). In
fact, the query is an abbreviated version of the ngp depicted in Figure 10.

Apart from (a restricted form) of RPQs and (c)ngps, Cypher also offers several unique
features that make it useful when working with property graphs. First, Cypher allows
for specifying the length of the path. For instance, in Example 4.11 we can change
the edge-label constraint [:knows*] to [:knows*2..7] to specify that the path must
traverse at least two and at most seven edges. Although this property is syntactic and
can be simulated using regular expressions, adding counting to regular expressions is
known to improve the succinctness of the language [Losemann and Martens 2013].

Another interesting feature available in Cypher is the ability to return paths.

Example 4.15. If we wanted to return all friends of friends of Julie in the graph
from Figure 5, together with a path witnessing the friendship, we can use:

MATCH p = (:Person {name:"Julie"}) -[:knows*]-> (x:Person)
RETURN x, p

The variable p will be bound by the witnessing path and will return (in Cypher syntax):

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 R. Angles et al.

+---+
| x | p |
+---+
| Node[2] | [Node[1],:knows[1],Node[2]] |
| Node[1] | [Node[1],:knows[1],Node[2],:knows[2],Node[1]] |
+---+

We assume that Node[1] corresponds to n1 (aka. John), knows[1] corresponds to e1, and
so forth. Each path is a sequence n1e1n2e2n3 . . . nk−1ek−1nk as discussed previously.
Though not shown, in practice Neo4j will also return all attributes and values on each
node and edge. No further paths are returned since they repeat an edge.

Gremlin. Gremlin supports navigation by the use of repeat, which enables arbi-
trary or fixed iteration of any graph traversal. As per SPARQL, Gremlin uses the
arbitrary path semantics for navigational queries. However, unlike SPARQL, Grem-
lin returns bags and not sets of answers. Therefore, when returning nodes, Gremlin
might repeat the same pair of nodes multiple (potentially infinite) times, depending on
how many paths conforming to the query exist between them, and similarly for paths
(which are defined in Gremlin as sequences of nodes).

Example 4.16. Recall how we used the following Gremlin expression in Exam-
ple 3.16 to obtain all co-stars of Clint Eastwood:

G.V().hasLabel('Person').has('name','Clint Eastwood')
.out('acts_in').hasLabel('Movies')

.in('acts_in').hasLabel('Person')

For a fixed-length iteration, we can use repeat and specify the number of times the
repetition should be performed. For example, the following traversal looks for actors
that are linked to Clint Eastwood by a path of length 2:

G.V().hasLabel('Person').has('name','Clint Eastwood').repeat(
out('acts_in').hasLabel('Movies')

.in('acts_in').hasLabel('Person')
).times(2)

If we want arbitrary traversal we can simply omit the times command; however, this
effectively means iterate an unbounded number of times, and consequently we may
never get anything out of this traversal. For this reason we use the emit() modulator
for repeat, which forces the repeat process to output the nodes after each iteration.

G.V().hasLabel('Person').has('name','Clint Eastwood').repeat(
out('acts_in').hasLabel('Movies')

.in('acts_in').hasLabel('Person')
).emit()

This query iterates an unbounded number of times, but at the end of each repetition,
the current nodes of the traversal are output for the query.

Finally, Gremlin also supports returning complete paths as results.

Example 4.17. To find all co-star paths connecting Clint Eastwood to other actors
(and himself), we can use the following query:

G.V().hasLabel('Person').has('name','Clint Eastwood').repeat(
out('acts_in').hasLabel('Movies')

.in('acts_in').hasLabel('Person')
).emit().path()

This query will then begin enumerating all paths per the call to path().

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases A:31

There are several other features of repeat that can modify the traversal
and output. For example, the emit() command can include conditions, such as
emit(hasLabel('Person')) to output only those nodes labelled 'Person'. Gremlin also
includes an until() operator, to provide while-loop-style repetition, for example, to
stop when a particular node is reached.

4.4. Complexity of evaluating navigational queries
We now discuss the complexity of evaluating navigational queries.

Path queries. We concentrate on the complexity of evaluating RPQs, which has re-
ceived considerable attention in the theoretical literature. This is relevant since RPQs
form the basis of many path query languages. We study the problem with respect to
the possible restrictions we mentioned before, focusing on the problems of checking if
a path exists, or finding pairs of nodes connected by some path under set semantics:

— Arbitrary paths: Determining whether v can be reached from u by a path labelled
in the regular expression L can be solved in linear time O(|G| · |L|) (see, e.g., [Wood
2012; Barceló 2013]). This bound can be achieved by using folklore algorithms based
on automata techniques. Such techniques can also be reformulated to compute the
set of all pairs of nodes that are linked by a path labelled in L in time O(|G|2 · |L|). In
the special case of an unconstrained path query Q = x

∗−→ y, we can simply perform
a directed reachability analysis over G. This can be done in time O(|G|) for a single
pair of nodes, and in O(|G|2) to compute all pairs of linked nodes.

— Shortest paths: Applying reachability techniques that return shortest paths (e.g.,
breadth-first search) in combination with the previous automata-based algorithms,
we obtain shortest paths witnessing the constraints stated by RPQs. In particular,
computing the set of all pairs of nodes that are linked by a path labelled in L, and
for each such pair a shortest path in G witnessing it, can be done in time O(|G|2 ·|L|).

— No-repeated-node/edge paths: Under such semantics, the complexity jumps: evalu-
ation becomes NP-complete even in data complexity [Mendelzon and Wood 1989].
Tractable instances of the RPQ evaluation problem under these semantics can be
found by either restricting regular expressions or the class of graph databases
[Mendelzon and Wood 1989; Bagan et al. 2013], but it remains to be seen to what
extent such restrictions are relevant in practice. The special case of Q = x

∗−→ y can
still be computed efficiently since any shortest path needs to be simple, and thus
finding an unconstrained simple path amounts to finding a shortest path.

In summary, finding nodes connected by arbitrary paths or finding a shortest path
satisfying an RPQ can be done in polynomial time, whereas considering simple paths,
the problem becomes intractable. An open question then is if there are any practical
scenarios in which the (intractable) simple path witness is really justified in terms of
computational cost over finding (tractable) witnesses based on shortest paths.

Please note that the discussion thus far assumes the use of set semantics when
returning pairs of nodes or paths. When considering bag semantics in such scenarios,
assuming a no-repeated-node/edge semantics, the complexity of the problem is at least
that of the problem of counting paths under the chosen semantics [Arenas et al. 2012;
Losemann and Martens 2013]; in the general case, this leads to a significant leap in
complexity for reasons discussed previously.

Navigational graph patterns. Recall that an ngp is a bgp where the edges can
also be labelled by an RPQ, or the special symbol ∗ denoting an arbitrary path. Assum-
ing we adopt a set semantics for paths, evaluating an ngp Q over a graph database G
can be implemented as follows:

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 R. Angles et al.

(1) First, each RPQ x
L−→ y that labels an edge of Q is evaluated over the graph

database G, and for each pair (u, v) of nodes that are connected by a path labelled
with L we add to G a new edge between u and v labelled with L.

(2) Second, we evaluate P over the graph we augmented in the first step, but now
treating P as a bgp (that is, L-labelled edges in P must only match to L-labelled
edges in G, and not to a pair of nodes connected by a path whose label is in L).

Therefore, ngp evaluation can be separated into independent phases of path query
evaluation (step 1) and graph pattern evaluation (step 2). This helps understand the
complexity of evaluating ngps better.

(1) First, how costly is step 1, i.e., building the augmented graph? Of course this de-
pends on the semantics for path query evaluation we use. If we use a simple
path interpretation, this process will be intractable, while if we apply an arbi-
trary/shortest path interpretation, we can construct the graph in time O(|G|2 · |Q|).

(2) Second, how expensive is step 2, namely, evaluating a bgp over a graph? We know
from Section 3 that this problem is NP-complete in general, but tractable for cer-
tain efficient classes of queries and tractable in data complexity. Likewise if we
consider c(n)gps, as in the case of SPARQL, the same complexity arguments apply.

Note that if we consider a bag semantics for paths, the first step will not succeed
since a graph is a set of edges, and duplicate edges will not be preserved in the aug-
mented graph; we would need an alternative strategy to capture such duplicate edges.
In any case, the problem of constructing the augmented graph is already intractable in
the case of set semantics, and will likewise be intractable in the case of bag semantics.

5. FINAL REMARKS
Graph databases are becoming more and more important in industry, with new graph
database engines and query languages being released in recent years. With this emerg-
ing variety of systems and languages, understanding the features that each brings, and
the fundamental issues that arise as a product of their design choices, is becoming of
increasing importance. In this survey, we have provided an overview of the develop-
ments in this area, bridging theory and practice in order to develop a categorisation of
features that constitute a common core for graph query languages.

Feature categorisation. We started our review of the core aspects of graph query lan-
guages by first presenting two graph database models: the edge-labelled graph model,
and the more elaborate property graph model. Thereafter we identified the two main
core features that are common in all modern graph query languages: pattern match-
ing and navigation. We think that these two forms of querying are at the heart of
graph query languages, and thus any reader that is familiar with these two classes
of queries – and the different options that one could consider with respect to both –
should be qualified to understand the core of any modern graph query language.12

To categorise pattern matching features, we identified the class of basic graph pat-
terns (bgps), which should arguably form the core of any graph query language, and
are indeed present in all of the practical systems we reviewed. These can be further ex-
tended with operators such as projection, union, or optional, among others, giving rise
to complex graph patterns (cgps). In terms of navigational queries, following both the
research literature and the practical solutions currently available, we identify paths

12Of course, there are also a number of additional operators which can be considered for graph querying,
such as different forms of aggregation, or graph transformations; however, these either do not add anything
fundamentally new to the core features we identified, or are implementation specific and not well explored
in the literature. We provide a brief overview of such features in the online appendix to our paper.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases A:33

Table I. Semantics adopted for pattern matching in SPARQL, Cypher and Gremlin.
∗: All languages support a distinct operator to enable set semantics.
†: Homomorphism-based semantics can be simulated using multiple MATCH com-
mands; see Example 3.11.
‡: Optional can be emulated imperatively.

Language supported patterns semantics
SPARQL all complex graph patterns homomorphism-based, bags∗

Cypher all complex graph patterns no-repeated-edges†, bags∗

Gremlin complex graph patterns
without explicit optional‡ homomorphism-based, bags∗

Table II. Semantics adopted for navigational queries in SPARQL, Cypher and Gremlin.
*: SPARQL adds negated property sets; see Example 4.8.
†: In the case of SPARQL, set semantics applies only when the query can not be rewritten as a
cgp (e.g., when it uses a ∗ operator); see [Harris and Seaborne 2013] for details.
‡: Cypher also allows to enable shortest-path semantics.
§: A distinct operator is supported to enable set semantics
||: In Gremlin, other semantics can also be enabled or otherwise emulated.

Language path expressions semantics choice of output
SPARQL more than RPQs∗ arbitrary paths, sets† boolean / nodes

Cypher fragment of RPQs no-repeated-edge‡, bags§ boolean / nodes /
paths / graphs

Gremlin more than RPQs arbitrary paths||, bags§ nodes / paths

as the core of all navigational queries over graphs, and adopt the well studied notion
of regular paths queries (RPQs) as the basis for navigating graphs. These can then be
incorporated into bgps giving rise to navigational graph patterns (ngps), which them-
selves can be further extended with operators such as union, optional, etc., to create
the notion of complex navigational graph patterns (cngps).

The choice of the appropriate semantics for each of these forms of queries has proven
to be a non-trivial task, and there have been several proposals coming both from prac-
tice and from theory. For matching basic graph patterns we classified the main propos-
als for the semantics into two categories:

(1) homomorphism-based: matching the pattern onto a graph with no restrictions.
(2) isomorphism-based: one of the following restrictions is imposed on a match:

— no-repeated-anything: no part of a graph is mapped to two different variables,
— no-repeated-node: no node in the graph is mapped to two different variables,
— no-repeated-edge: no edges in the graph is mapped to two different variables.

On the other hand, for path queries one can consider: (a) arbitrary paths; (b) shortest
paths only; (c) paths not repeating a node (aka. simple paths); and (d) paths not re-
peating an edge. For the case of path queries there is also the question of how should
their output look like. The options here range from: (i) checking the existence of a
path (boolean output); (ii) returning start/end nodes of a path; (iii) returning complete
paths; and (iv) returning entire graphs. In the case of both graph patterns and path
queries, one can chose if answers are returned as bags (where duplicate answers are
returned per their multiplicity), or sets (only a single copy of each answer is returned).

To exemplify our categorisation, we have reviewed some of the key design choices
made for SPARQL, Cypher and Gremlin: three of the currently most popular query
languages used in graph database engines. Table I contains a summary of these choices
for pattern matching, and Table II likewise for navigational queries. Of course, all
three languages extend upon these core features presented; however, this core offers a
good starting point to further formalise, study and understand these languages.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 R. Angles et al.

Throughout, we have also discussed the effects of such design choices on the com-
putational complexity considering various types of semantics and various evaluation
problems. With respect to SPARQL, Cypher and Gremlin, we can summarise the fol-
lowing known results in terms of computational complexity of query evaluation, where
PM refers to Pattern Matching and NQ to Navigational Queries.

— In terms of complexity, by far the most studied language of the three is SPARQL.
PM. It is known that the evaluation of bgps with projection is NP-complete and
that the evaluation of cgps is PSPACE-complete [Pérez et al. 2009].
NQ. Evaluating cngps remains within the same complexity class as cgps –
PSPACE-complete – assuming the set-based semantics of property paths used
in the final official version of the SPARQL 1.1 standard [Kostylev et al. 2015].

— With respect to Cypher, less is understood. One complication, in particular, is the
use of the no-repeated-edge semantics, which has not been well-studied.

PM. While evaluating bgps with projection in Cypher directly relates to the
subgraph-isomorphism problem (which is NP-complete), there are no results
stating how the no-repeated-edge semantics might affect the evaluation of cgps,
so it is not clear if the problem is as hard (or perhaps even harder) than in the
case of SPARQL: all that we can directly conclude is that evaluating cgps under
this default semantics in Cypher is NP-hard. However, as per Example 3.11, a
homomorphism-based semantics can be emulated by using multiple MATCH pat-
terns; assuming such a “trick” is used, then SPARQL-like cgps can be modelled
and the complexity is PSPACE-hard.
NQ. Stating formal results is complicated by the fact that Cypher has a no-
repeated-edge semantics (rather than the more well-studied no-repeated-node
semantics for simple paths), a bag semantics, and that it does not support full
RPQ-style expressions. Little is known of the complexity of such features, how-
ever, some lower bounds can be easily inferred. For instance, evaluating path
queries is already NP-hard due to the fact that Cypher allows path unwinding
(see our online appendix for more details).

— With respect to Gremlin, the language is Turing-complete. However, if we only con-
sider the core fragments discussed herein, we can make the following conclusions:

PM. As per Table I, we can see that the semantics of Gremlin and SPARQL are
almost equivalent; even excluding the imperative features needed to emulate
optional patterns in Gremlin, evaluating cgps should still be PSPACE-complete.
NQ. The study of navigational queries in Gremlin is complicated by the combi-
nation of potentially infinite arbitrary paths, the default bag semantics and the
presence of features that go beyond RPQs. However, we can note that consider-
ing only RPQ-style expressions returning nodes (and not paths) with the default
arbitrary-path semantics, the expressivity is equivalent to SPARQL and the
complexity of evaluating cngps should thus be the same as for cgps: PSPACE-
complete.

This discussion shows that there are various open questions in terms of the complexity
associated with the design choices made, in particular, by the Cypher query language.

Uses of this survey. First, the categorisation of models, query features, semantics
and results covered by this survey offer a useful guide to anyone who wishes to un-
derstand a graph query language – be it an existing such language or one yet to be
proposed – not in terms of superficial issues like query syntax or minor variations in
the graph model, but rather in terms of fundamental querying abilities, choice of se-
mantics, and expressivity. Once the core of a language can be understood in this more
abstract way, different languages can then be compared and contrasted in a similar,

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases A:35

foundational manner. We have provided such a comparison for the languages SPARQL,
Cypher and Gremlin. Indeed, even though these languages run over different models
and have completely different syntax, etc., by looking at Table I and Table II, one
realises that the core of these languages is fundamentally rather similar. In the same
fashion, using this survey as a guide, we could now compare a new proposal for a graph
query language by abstracting the pattern matching and navigational capabilities of
the language, and asking relevant questions such as: “what is the semantics of pattern
matching in this language?”; or “what type of navigational features does it include?”.

This growing diversity of graph database technologies moreover suggests that the
time may come for further standardisation of graph query languages. While SPARQL
has been formally standardised for RDF databases and has been well studied in the
literature, many implementers have opted for custom graph database solutions and
engines with custom languages, such as Neo4j with Cypher. Likewise, ad hoc standards
like Gremlin have emerged in recent years and have been implemented by multiple
vendors. However, unlike SPARQL, the semantics and complexity of languages like
Cypher and Gremlin have not been studied. Looking to the future, one can thus expect
standardisation efforts to rigorously define and characterise the properties of a general
graph query language that takes into consideration the demands of the industry, much
like the story for SQL, where core features are abstracted as the relational algebra. Of
course, a query language may not always abide by a clean abstraction, as per the case
of SQL which goes beyond the relational algebra in various ways, or the languages in
Table I and Table II that are annotated with exceptions and support a variety of other
features not covered. But yet, the exercise of abstracting languages into core features
is a necessary task if one wants to create standards in terms of understanding which
features are simply syntactic (i.e., redundant in terms of expressivity), what choice
of semantics and features could be considered, and what effects such choices have
with respect to achieving desirable computational guarantees in terms of evaluating
queries in that language. A notable such example of this were the studies by Arenas
et al. [2012] and Losemann and Martens [2013] on the complexity of property paths
initially proposed in a SPARQL 1.1 draft, which lead to the semantics being changed
in the final version. Likewise, we believe that this survey can serve as a useful guide
for current and future standardisation processes involving graph query languages.

We also expect that our survey could serve to bridge the theory/practice gap, helping
to port theoretical results about abstract languages (such as graph patterns or path
queries) into real graph database engines, and also the other way around, helping to
state the problems facing current graph engines in a formal manner. Indeed, we have
seen multiple times in this survey that a seemingly innocuous change can have a dras-
tic effect on computational complexity upon further examination; for example, we saw
how an optional operator in cgps leads to a jump in complexity for query evaluation, or
how having a no-repeated-node semantics can render path queries intractable, or (in
the aforementioned case of SPARQL 1.1) how the combination of bag semantics and
path queries can quickly become problematic. On the other hand, for example, we have
also seen that bpgs with projection can be extended with a variety of useful features
without a complexity jump in terms of query evaluation, including support for ngps
with path expressions. But while the existing theory provides important insights, this
survey also reveals gaps in the literature. To name a few examples: the problem of
finding tractable subclasses of graph patterns that can be evaluated efficiently over
no-repeated-edge semantics is almost unexplored; systems capable of returning paths
need a way of representing a set of paths whenever it is infinite; and we have already
noted the importance of a more rigorous theoretical formalisation of Cypher and Grem-
lin in order to determine the exact complexity of evaluating their queries and to un-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 R. Angles et al.

derstand their expressive power. In this respect, we believe that our survey can bring
research questions from the practical world of graph database engines into theory.

Future directions. Our categorisation also opens interesting possibilities for further
work in terms of surveying and classifying other important aspects of graph databases
that are infeasible to cover in this survey with the necessary depth.

The first issue has to do with the implementation and optimisation of modern query
languages. In surveying fundamental features, we have only dealt with such issues
indirectly. A number of implementations of modern graph query languages using the
features in this survey have emerged: in terms of some of the most prominent SPARQL
engines that have been released, we can name 4store [Harris et al. 2009], BlazeGraph
(formerly BigData [Thompson et al. 2014]), GraphDB (formally (Big)OWLIM [Bishop
et al. 2011]), Jena [Wilkinson et al. 2003], and Virtuoso [Erling 2012]; with respect
to property graphs, Neo4j [The Neo4j Team 2016] is one of the most popular engines,
but one can also cite Titan [DataStax 2015] and OrientDB [Tesoriero 2013]. Collec-
tively these engines implement a diverse range of indexing strategies, query planning
methods, optimisations and ad hoc heuristics – with more proposed in the literature –
sometimes borrowing directly from relational databases (e.g., [Wilkinson et al. 2003]),
others being custom-designed for graphs (e.g., [Bishop et al. 2011; Tesoriero 2013]), and
others still that intersect the relational and graph worlds (e.g., [Erling 2012; Paradies
et al. 2015]). The analysis and classifications of all these implementation strategies is
an important task that can benefit tremendously from our framework and would make
for an interesting complementary survey in the future.

The second important line of work has to do with identifying the core of graph ana-
lytics and other operations more related to machine learning, or computing statistics
over graphs. Currently these operations are not commonly compiled into query lan-
guages, but instead graph engines normally provide several data-access primitives
such that users can implement their own algorithms within a programming environ-
ment: a direction in which Gremlin goes, for example. Furthermore, there has recently
been a lot of work on domain-specific languages that can take care of particular sets of
operations within a certain domain or scenario (see e.g. [Hong et al. 2012]). However,
in the area of graph analytics, with different tasks ranging from computing weighted
shortest paths to computing the PageRank matrix of an entire graph, we see the same
diversity problem as with graph query languages: how to abstract the core (possibly
declarative) features of such operations?

More pertinently for this survey, it is not clear where graph query languages start
and graph analytics languages end: what is the overlap of features required, how do
they complement and/or extend each other, etc. The graph database community has
been slow in adopting graph analytics as a problem of study, but as the importance
of these operations grow, we expect this to change in the next few years. We believe
that the first goal of the community should be identifying a common core of the most
widely used operations, just as we have done with graph query languages. It would
also be interesting to understand how classical database-querying tasks compare to
engines supporting the so-called vertex-centric programming model, such as Apache
Giraph [Han and Daudjee 2015], GraphX [Xin et al. 2013] or Pregel [Malewicz et al.
2010]. This again goes in the direction of Gremlin, which as we have discussed has
many elements that are similar to a declarative query language, but also encapsulates
a more imperative style, being supported, for example by, the aforementioned Apache
Giraph analytics framework. We have also recently seen the first efforts in designing
a more declarative language in this context [Jindal and Madden 2014], and in the
following years we expect more research in this direction.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases A:37

Conclusion. Recent years have seen the re-emergence of graph databases as an im-
portant alternative to their more widely-established relational cousin, bringing with
them a variety of new challenges, new demands, and new questions. In this survey,
we have provided an overview of the fundamental query features that underlie such
databases and have provided a categorisation that generalises much of these recent
developments and offers a bridge to known theoretical results while raising some new
questions. Of course, there are many open challenges facing graph databases in terms
of standardising query languages, implementing and optimising engines for query
evaluation, studying the theoretical properties of related problems, as well as evolving
graph databases to meet emerging demands for graph analytics. We hope that this
survey may serve as a useful guide for those involved in such efforts.

REFERENCES
Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley.
Charu C. Aggarwal and Haixun Wang. 2010. Managing and Mining Graph Data. Springer.
Faisal Alkhateeb, Jean-François Baget, and Jérôme Euzenat. 2009. Extending SPARQL with regular ex-

pression patterns (for querying RDF). J. Web Sem. 7, 2 (2009), 57–73.
Renzo Angles. 2012. A comparison of current graph database models. In Graph Data Management (GDM)

(ICDE Workshop).
Renzo Angles and Claudio Gutierrez. 2008. The Expressive Power of SPARQL. In The Semantic Web (ISWC).

114–129.
Renzo Angles and Claudio Gutiérrez. 2008. Survey of graph database models. ACM Comput. Surv. 40, 1

(2008).
Renzo Angles and Claudio Gutierrez. 2016. The Multiset Semantics of SPARQL Patterns. In The Semantic

Web (ISWC). Springer, 20–36.
Apache TinkerPop. 2017. TinkerPop3 Documentation v.3.2.5. http://tinkerpop.apache.org/docs/current/

reference/. (June 2017).
Marcelo Arenas, Sebastián Conca, and Jorge Pérez. 2012. Counting beyond a Yottabyte, or how SPARQL 1.1

property paths will prevent adoption of the standard. In World Wide Web (WWW). 629–638.
Guillaume Bagan, Angela Bonifati, and Benoît Groz. 2013. A trichotomy for regular simple path queries on

graphs. In Principles of Database Systems (PODS). 261–272.
Pablo Barceló. 2013. Querying graph databases. In Principles of Database Systems (PODS). 175–188.
Pablo Barceló, Leonid Libkin, Anthony Widjaja Lin, and Peter T. Wood. 2012a. Expressive Languages for

Path Queries over Graph-Structured Data. ACM Trans. Database Syst. 37, 4 (2012), 31.
Pablo Barceló, Leonid Libkin, and Juan L. Reutter. 2014. Querying Regular Graph Patterns. J. ACM 61, 1

(2014), 8:1–8:54.
Pablo Barceló and Pablo Muñoz. 2014. Graph logics with rational relations: the role of word combinatorics.

In Logic in Computer Science (LICS). 12:1–12:10.
Pablo Barceló, Jorge Pérez, and Juan L. Reutter. 2012b. Relative Expressiveness of Nested Regular Expres-

sions. In Alberto Mendelzon Workshop (AMW). 180–195.
Christopher L. Barrett, Riko Jacob, and Madhav V. Marathe. 2000. Formal-language-constrained path prob-

lems. SIAM J. Comput. 30, 3 (2000), 809–837.
Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, Ivan Peikov, Zdravko Tashev, and Ruslan Velkov. 2011.

OWLIM: A family of scalable semantic repositories. Semantic Web Journal 2, 1 (2011), 33–42.
Peter Buneman. 1997. Semistructured Data. In Principles of Database Systems (PODS). 117–121.
Peter Buneman, Susan B. Davidson, Gerd G. Hillebrand, and Dan Suciu. 1996. A Query Language and

Optimization Techniques for Unstructured Data. In SIGMOD International Conference on Management
of Data (SIGMOD). 505–516.

Horst Bunke. 2000. Graph matching: Theoretical foundations, algorithms, and applications. In Vision Inter-
face. 82–88.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. 2000. Containment of
Conjunctive Regular Path Queries with Inverse. In Knowledge Representation and Reasoning (KR).
176–185.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. 2002. Rewriting of Regular
Expressions and Regular Path Queries. J. Comput. Syst. Sci. 64, 3 (2002), 443–465.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 R. Angles et al.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. 2003. Reasoning on regu-
lar path queries. SIGMOD Record 32, 4 (2003), 83–92.

Chandra Chekuri and Anand Rajaraman. 2000. Conjunctive query containment revisited. Theor. Comput.
Sci. 239, 2 (2000), 211–229.

Jiefeng Cheng, Jeffrey Xu Yu, Bolin Ding, Philip S. Yu, and Haixun Wang. 2008. Fast Graph Pattern Match-
ing. In International Conference on Data Engineering (ICDE). 913–922.

Mariano P. Consens and Alberto O. Mendelzon. 1990. GraphLog: a Visual Formalism for Real Life Recursion.
In Principles of Database Systems (PODS). 404–416.

Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. 1987. A Graphical Query Language Supporting
Recursion. In SIGMOD International Conference on Management of Data (SIGMOD). 323–330.

Víctor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi. 2002. Constraint Satisfaction, Bounded Treewidth,
and Finite-Variable Logics. In Constraint Programming (CP). 310–326.

DataStax. 2015. Titan Documentation. http://s3.thinkaurelius.com/docs/titan/1.0.0/. (2015).
Orri Erling. 2012. Virtuoso, a Hybrid RDBMS/Graph Column Store. IEEE Data Eng. Bull. 35, 1 (2012), 3–8.
Wenfei Fan. 2012. Graph pattern matching revised for social network analysis. In International Conference

on Database Theory (ICDT). 8–21.
Wenfei Fan, Jianzhong Li, Shuai Ma, Hongzhi Wang, and Yinghui Wu. 2010. Graph Homomorphism Revis-

ited for Graph Matching. Very Large Data Bases (PVLDB) 3, 1 (2010), 1161–1172.
Diego Figueira and Leonid Libkin. 2015. Path Logics for Querying Graphs: Combining Expressiveness and

Efficiency. In Logic in Computer Science (LICS). 329–340.
Valeria Fionda, Giuseppe Pirrò, and Mariano P Consens. 2015. Extended property paths: writing more

SPARQL queries in a succinct way. In AAAI Conference on Artificial Intelligence.
Daniela Florescu, Alon Y. Levy, and Dan Suciu. 1998. Query Containment for Conjunctive Queries with

Regular Expressions. In Principles of Database Systems (PODS). 139–148.
César A. Galindo-Legaria and Arnon Rosenthal. 1997. Outerjoin Simplification and Reordering for Query

Optimization. ACM Trans. Database Syst. 22, 1 (1997), 43–73.
Brian Gallagher. 2006. Matching structure and semantics: A survey on graph-based pattern matching. In

AAAI Fall Symposium. 43–53.
Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. 2016. Hypertree Decompositions:

Questions and Answers. In Principles of Database Systems (PODS). 57–74.
Minyang Han and Khuzaima Daudjee. 2015. Giraph unchained: barrierless asynchronous parallel execution

in pregel-like graph processing systems. Very Large Data Bases (PVLDB) 8, 9 (2015), 950–961.
Steve Harris, Nicholas Lamb, and Nigel Shadbolt. 2009. 4store: The Design and Implementation of a Clus-

tered RDF Store. In Scalable Semantic Web Knowledge Base Systems (SWSS), colocated with ISWC
(CEUR Workshop Proceedings), Vol. 517. CEUR-WS, 94–109.

Steve Harris and Andy Seaborne. 2013. SPARQL 1.1 Query Language. W3C Recommendation. (2013). http:
//www.w3.org/TR/sparql11-query/

Pavol Hell and Jaroslav Nesetril. 2004. Graphs and Homomorphisms. Oxford University Press.
Daniel Hernández, Aidan Hogan, and Markus Krötzsch. 2015. Reifying RDF: What Works Well With Wiki-

data?. In Scalable Semantic Web Knowledge Base Systems (SWSS), colocated with ISWC. 32–47.
David A. Holland, Uri Jacob Braun, Diana Maclean, Kiran-Kumar Muniswamy-Reddy, and Margo I. Seltzer.

2008. Choosing a data model and query language for provenance. In 2nd International Provenance and
Annotation Workshop (IPAW).

Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. 2012. Green-Marl: a DSL for easy and
efficient graph analysis. In ACM SIGARCH Computer Architecture News, Vol. 40. ACM, 349–362.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2003. Introduction to Automata Theory, Lan-
guages, and Computation – International Edition (2. ed). Addison-Wesley.

Alekh Jindal and Samuel Madden. 2014. GRAPHiQL: A graph intuitive query language for relational
databases. In Big Data. IEEE, 441–450.

Graham Klyne, Jeremy J. Carroll, and Brian McBride. 2014. RDF 1.1 Concepts and Abstract Syntax. W3C
Recommendation. (25 Feb. 2014). https://www.w3.org/TR/rdf11-concepts/

Egor V. Kostylev, Juan L. Reutter, Miguel Romero, and Domagoj Vrgoč. 2015. SPARQL with Property Paths.
In The Semantic Web (ISWC). 3–18.

LDBC. 2015. LDBC Task Force: Property Graphs Data Model. http://www.ldbcouncil.org. (2015).
Leonid Libkin, Wim Martens, and Domagoj Vrgoč. 2016. Querying Graphs with Data. J. ACM 63, 2 (2016),

14.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases A:39

Leonid Libkin and Domagoj Vrgoč. 2012. Regular path queries on graphs with data. In International Con-
ference on Database Theory (ICDT). 74–85.

Lorenzo Livi and Antonello Rizzi. 2013. The graph matching problem. Pattern Anal. Appl. 16, 3 (2013),
253–283.

Katja Losemann and Wim Martens. 2013. The complexity of regular expressions and property paths in
SPARQL. ACM Trans. Database Syst. 38, 4 (2013), 24.

Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn, Naty Leiser, and Grze-
gorz Czajkowski. 2010. Pregel: a system for large-scale graph processing. In SIGMOD International
Conference on Management of Data (SIGMOD). ACM, 135–146.

Akiyoshi Matono, Toshiyuki Amagasa, Masatoshi Yoshikawa, and Shunsuke Uemura. 2003. An efficient
pathway search using an indexing scheme for RDF. GENOME INFORMATICS SERIES (2003), 374–
375.

Alberto O. Mendelzon and Peter T. Wood. 1989. Finding Regular Simple Paths in Graph Databases. In Very
Large Data Bases (VLDB). 185–193.

Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon. 2002. Network
motifs: simple building blocks of complex networks. Science 298, 5594 (2002), 824–827.

Hiroyuki Ogata, Wataru Fujibuchi, Susumu Goto, and Minoru Kanehisa. 2000. A heuristic graph compari-
son algorithm and its application to detect functionally related enzyme clusters. Nucleic acids research
28, 20 (2000), 4021–4028.

Marcus Paradies, Wolfgang Lehner, and Christof Bornhövd. 2015. GRAPHITE: an extensible graph traver-
sal framework for relational database management systems. In Scientific and Statistical Database Man-
agement (SSDBM). 29:1–29:12.

Task Force: Property Paths. 2009. Use cases in Property Paths Task Force. http://www.w3.org/2009/sparql/
wiki/TaskForce:PropertyPaths#Use_Cases. (2009).

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. 2009. Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34, 3 (2009).

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. 2010. nSPARQL: A navigational language for RDF. J.
Web Sem. 8, 4 (2010), 255–270.

Eric Prud’hommeaux and Andy Seaborne. 2008. SPARQL Query Language for RDF. W3C Recommendation.
(2008). http://www.w3.org/TR/rdf-sparql-query/

Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. 2015. Regular Queries on Graph Databases. In Inter-
national Conference on Database Theory (ICDT). 177–194.

Patrick Reynolds. 2015. Oracle of Bacon. http://www.oracleofbacon.org/. (2015).
Kaspar Riesen, Xiaoyi Jiang, and Horst Bunke. 2010. Exact and Inexact Graph Matching: Methodology and

Applications. In Managing and Mining Graph Data. 217–247.
Ian Robinson, Jim Webber, and Emil Eifrem. 2013. Graph Databases (first ed.). O’Reilly Media.
Michael Schmidt, Michael Meier, and Georg Lausen. 2010. Foundations of SPARQL query optimization. In

International Conference on Database Theory (ICDT). 4–33.
Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. 2011. Pathsim: Meta path-based top-k

similarity search in heterogeneous information networks. Very Large Data Bases (PVLDB) 4, 11 (2011),
992–1003.

Claudio Tesoriero. 2013. Getting Started with OrientDB. Packt Publishing Ltd.
The Neo4j Team. 2016. The Neo4j Manual v3.0. http://neo4j.com/docs/stable/. (2016).
Bryan B. Thompson, Mike Personick, and Martyn Cutcher. 2014. The Bigdata® RDF Graph Database. In

Linked Data Management. 193–237.
Julian R. Ullmann. 1976. An Algorithm for Subgraph Isomorphism. J. ACM 23, 1 (1976), 31–42.
Leslie G. Valiant. 1979. The Complexity of Enumeration and Reliability Problems. SIAM J. Comput. 8, 3

(1979), 410–421.
Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi. 2016. PGQL: a Property

Graph Query Language. In Graph Data Management Experiences and Systems (GRADES).
Moshe Y. Vardi. 1982. The Complexity of Relational Query Languages (Extended Abstract). In Symposium

on Theory of Computing (STOC). 137–146.
Kevin Wilkinson, Craig Sayers, Harumi A. Kuno, Dave Reynolds, and Luping Ding. 2003. Supporting Scal-

able, Persistent Semantic Web Applications. IEEE Data Eng. Bull. 26, 4 (2003), 33–39.
Peter T. Wood. 2012. Query languages for graph databases. SIGMOD Record 41, 1 (2012), 50–60.
Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. 2013. Graphx: A resilient distributed

graph system on spark. In Graph Data Management Experiences and Systems (GRADES). ACM, 2.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 R. Angles et al.

Junchi Yan, Xu-Cheng Yin, Weiyao Lin, Cheng Deng, Hongyuan Zha, and Xiaokang Yang. 2016. A Short
Survey of Recent Advances in Graph Matching. In Multimedia Retrieval (ICMR). 167–174.

Jeffrey Xu Yu and Jiefeng Cheng. 2010. Graph Reachability Queries: A Survey. In Managing and Mining
Graph Data, Charu C. Aggarwal and Haixun Wang (Eds.). Advances in Database Systems, Vol. 40.
Springer, 181–215.

Lei Zou, Lei Chen, and M. Tamer Özsu. 2009. DistanceJoin: Pattern Match Query In a Large Graph
Database. Very Large Data Bases (PVLDB) 2, 1 (2009), 886–897.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Online Appendix to:
Foundations of Modern Query Languages for Graph Databases13

RENZO ANGLES, Universidad de Talca & Center for Semantic Web Research
MARCELO ARENAS, Pontificia Universidad Católica de Chile & Center for Semantic Web Research
PABLO BARCELÓ, DCC, Universidad de Chile & Center for Semantic Web Research
AIDAN HOGAN, DCC, Universidad de Chile & Center for Semantic Web Research
JUAN REUTTER, Pontificia Universidad Católica de Chile & Center for Semantic Web Research
DOMAGOJ VRGOČ, Pontificia Universidad Católica de Chile & Center for Semantic Web Research

Throughout the survey we focused on fundamental graph querying features as es-
tablished by the research literature and used in practical graph database engines. In
this appendix, we examine some emerging aspects of graph query languages, such as
alternative semantics for basic graph patterns; navigational queries that go beyond
paths; solution modifiers, such as aggregation, path unwinding and graph-to-graph
queries; as well as some further extensions of SPARQL, Cypher and Gremlin. We start
with the alternative semantics for BGPs.

A. ALTERNATIVE SEMANTICS FOR BASIC GRAPH PATTERNS
There are two main criticisms of the homomorphism and isomorphism based seman-
tics. First, as discussed in Subsection 3.4, the computational complexity of key prob-
lems associated with these semantics can be quite high since they directly capture
notions of graph homomorphism and subgraph isomorphism [Ullmann 1976] (which
are both known to have NP-complete decision problems). Second, the matches defined
by the above semantics are rigid, in the sense that they require the entire query to
be matched onto the graph continuously. That is, even when all parts of the query
can be matched to (possibly different parts of) the graph, they may return zero an-
swers. To remedy the situation, one can deploy the more flexible notion of graph-
simulations [Milner 1989] when defining a match, which gives rise to an additional
semantics.

Simulation-based semantics: A generalisation of the notion of a homomorphism-based
match has been proposed in the form of graph-simulations [Milner 1989], which, intu-
itively speaking, allow matching one node of a pattern to several nodes in the graph,
as long as the structure of the pattern is preserved. Given an edge-labelled graph
G = (V,E) and a bgp Q = (V ′, E′), a simulation between Q and G is a relation
S ⊆ V ′×V such that: (i) for every node n′ in V ′ there is a node n in V such that the pair
(n′, n) is in S, and (ii) for every pair (n′, n) ∈ S and every edge (n′, r′,m′) in E′, there ex-
ists an edge (n, r,m) in E such that (m′,m) ∈ S and r = r′ if r′ ∈ Const (and can be any
value when r′ ∈ Var). Then an answer to Q over G under the simulation-based seman-
tics is any simulation S betweenQ andG. As shown in the literature, simulation-based
semantics is computationally lighter for certain problems [Henzinger et al. 1995; Fan
et al. 2011] and is more versatile when handling large graphs that might contain in-
complete information [Fan et al. 2010a; Fan 2012; Fan et al. 2010b].

Simulation-based semantics can be naturally extended to property graphs. In this
case, if a query node (or edge) uses constants in its attributes, we also require that it
matches a graph node with equal values in the corresponding attributes. That is, when
(v′, v) belongs to our simulation, we also need the following conditions: (iii) if λ(v′) = r

© YYYY ACM. 0000-0000/YYYY/01-ARTA $15.00
DOI: 0000001.0000001

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

App–2 R. Angles et al.

with r ∈ Const, then λ(v) = r; and (iv) σ(v′, e′) = a′, then σ(v, e) = a, for some e and
a, with e = e′ when e′ ∈ Const and a = a′ when a′ ∈ Const. A similar condition is also
required for edge properties when specified in the query.

Example A.1. Consider again the graph G from Figure 1, and let Q be the following
BGP:

x1 x2acts_in

One simulation between the query Q above and the graph G is given by the rela-
tion S = {(x1, Clint Eastwood), (x2, Unforgiven)}. Another simulation is given by the rela-
tion S′ = {(x1, Clint Eastwood), (x2, Unforgiven), (x1, Anna Levine)}, which in a sense contains
matches for both Clint Eastwood and for Anna Levine. This exemplifies the fact that
simulation-based semantics can capture multiple homomorphic matches in a single
relation, which is one of the reasons why it can be evaluated more efficiently.

The idea of matching the same query node to multiple graph nodes may be counter
intuitive, as it captures “too much" information in a single relation. For this reason
simulation-based semantics is often viewed as a base semantics for defining a set of
“candidate matches” that can be further restricted and refined for particular use-cases,
as has been explored recently by Ma et al. [2014].

The evaluation problem for the fragment consisting of bgps and projection can be
solved in polynomial time for the case of the simulation-based semantics considered in
Section 3.1 [Fan et al. 2010a].

B. MORE EXPRESSIVE NAVIGATIONAL QUERIES
For the navigational languages we have seen in Section 4, paths are the only form of
recursion allowed, but to express certain types of queries, we may require more expres-
sive forms of recursion. Imagine for instance that as in Example 4.2 we wish to check
for all pairs of actors in our movie database that are connected by co-star relations,
but only considering actors that have directed a movie (such as Clint Eastwood). We
cannot express this query by a regular expression over paths since, aside from finding
paths between co-stars, we need to check that each intermediate node in the path has
an outgoing edge labelled directs. In this section, we present several languages that
can express these types of queries, and explain how this can be achieved.

B.1. Nested regular expressions
The language of nested regular expressions (NREs) extends RPQs with a branching or
nesting operator that allows to recursively check other nested RPQs over the nodes
of a path. As such, the evaluation of an NRE consists of paths where nodes have a
potentially branching path that satisfies the given nested RPQ. Conceptually speaking,
NREs thus allow for capturing paths matched by a tree-shaped pattern, offering an
increase in expressive power that has been applied in practice, for example, to form
the basis of proposed navigational query languages for RDF [Pérez et al. 2010; Barceló
et al. 2012].

Example B.1. In the language of NREs, we can restrict our co-star paths to only
consider directors using the following expression:

x

(
acts_in·acts_in− [directs]

)+
−−−−−−−−−−−−−−−−−−−→ y .

This query asks for a path whose label belongs to the regular expression (with inverse)
(acts_in · acts_in−)+, but imposes an additional condition: every intermediate node
captured by the sub-expression acts_in·acts_in− must have an outgoing edge labelled

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases App–3

x y

(a) Base for repetitions

x y· · ·
(b) Transitive closure of the base pattern

Fig. 11. Base of an NRE and the transitive closure over this base. We assume all horizontal edges in the
above images to be labelled with acts_in, and all vertical edges with directs.

directs. More generally, the latter bracketed expression is an RPQ that is used as an
existential branching test on the preceding sub-expression, checking to ensure that
each matched node is connected to some other node by the given bracketed expression.
Note that the above pattern does not check that the start node is a director.

This recursive pattern is defined by the structure depicted in Figure 11: one can also
think of this structure as taking the base pattern from Figure 11(a) and applying it
recursively as illustrated in Figure 11(b).

Just as we did with regular path queries, one can consider conjunctions of such
patterns to arrive at the language of conjunctive nested regular expressions (CRNEs),
which has thus far only been studied in theory [Barceló et al. 2013; Bienvenu et al.
2014]. Another direction to extend NREs is to add more expressive features such as
negation and unary formulas. By doing so one arrives at a language that is equivalent
to applying XPath [Xpath 1999] over graph databases. In fact, as shown by Libkin
et al. [2016], NREs themselves correspond to a positive fragment of XPath.

B.2. Regular data path queries
While considering NREs, it is perhaps natural to consider how similar such patterns
could be applied to property graphs, and in particular, to test the values of various
node and edge attributes appearing along the path that one is traversing. To illustrate
the issue, consider the following example.

Example B.2. Coming back to our social network, recall that in Example 4.1 we
showed how to compute the friend-of-a-friend relation using the expression knows+.
Assume we now want to again compute the friend-of-a-friend relation, but we wish to
consider only the people who live in the same country: each time we traverse an edge
labelled knows, we need to check that the value of the country attribute is equal for
both nodes connected by the edge. This can be expressed as follows:

e := ([knows]start.country=end.country)+

where the filter start.country=end.country checks the aforementioned condition on
all pairs of nodes connected by the knows edges that form the path. Note that unlike
NREs, here we can express comparisons between the values of attributes. Also note
that the brackets [] have different meaning in NREs as opposed to RDPQs. Namely, in
the former they apply to nodes, and in the latter to the start/end point of a path the
expression between the brackets defines.

Expressions such as e above can be formalised by extending the grammar of the or-
dinary regular expressions with the operator [exp]c, where exp is an expression, and
c is a filter of the form start.atr=end.atr′, with atr and atr′ being attribute names.
The full grammar is then given by the following e := a ; e · e ; e | e ; e∗ ; [e]c, with c a
conjunction of expressions of the form start.atr = end.atr′ or start.atr 6= end.atr′.
Allowing any such expression e inside a path query x e−→ y gives rise to regular data
path queries (RDPQs), with the name signifying that paths consider not only naviga-
tional aspects, but also reason about the data stored in the graph.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

App–4 R. Angles et al.

Although queries that allow reasoning about how the attribute values change along
paths seem to be relevant in practical applications, they seem to be poorly supported
in existing systems. On the other hand, they did receive some attention in the theo-
retical literature. For instance, the base language for regular data path queries was
introduced in [Libkin and Vrgoč 2012], and some further extensions allowing first or-
der reasoning over paths [Hellings et al. 2013], or unlimited use of variables [Libkin
et al. 2016; Barceló et al. 2015] have also been considered. However, since there is still
no clear consensus on the correct language for this task, this seems to be a promising
area of future work, both with respect to the theoretical issues, and with respect to the
correct techniques for implementing such queries in graph database systems.

B.3. Datalog variants
Thus far all recursive navigational expressions we have considered are based on paths
(e.g., RPQs) or trees (e.g., NREs). So what happens when we consider more general
queries which look for repetitions of arbitrary bgps? It turns out that such queries
can typically be expressed in Datalog-like languages [Abiteboul et al. 1995], which
correspond to powerful recursive languages based on rules.

Example B.3. To exemplify how this works, let us focus on edge-labelled graphs
(a similar translation can be devised for property graphs). Now instead of considering
actors that are connected simply on merit of having co-starred in a movie, let us add
the constraint that they must additionally direct a movie together (possibly a differ-
ent movie). Let us call a pair of actor–directors connected (directly) in such a fashion
“peers”. Taking an edge-labelled graph G (in the style of Figure 1), we can create a
query for peers as follows: Q = (V,E), where V = {x, y,m, n} are variables and where
E contains (x, acts_in,m), (x, directs, n), (y, acts_in,m) and (y, directs, n).

To express this in Datalog we adopt the convention that the relation E(x, y, z) en-
codes an edge (x, y, z) in an edge-labelled graph G = (V,E). We can then represent the
original bgp Q as the following Datalog rule:

Q(x, y)← E(x, acts_in,m),E(x, directs, n),E(y, acts_in,m),E(y, directs, n) .

Applying this rule generates a binary relation Q that contains precisely the matches
of bgp Q over G; in other words, we can quite easily represent a bgp as a Datalog rule
and evaluate it as such.

Let us assume we now wish to find all nodes connected recursively through a peer
relation. We can add the following rule:

Q(x, z)← Q(x, y),Q(y, z) .

Applying these two Datalog rules in a recursive fashion generates an output Q that
contains the transitive closure over peers.

More importantly – as illustrated in Figure 12 – the base pattern of Figure 12(a)
is not a path nor a tree, and hence the resulting recursive pattern of Figure 12(b)
achieved by these two Datalog rules would not be expressible in any language we
discussed earlier: with Datalog, the recursive pattern can be an arbitrary bgp.

In a manner analogous to returning paths for RPQs, one could consider trying to
return a similar result for Datalog, but where instead of having sequences of nodes
connected by edges in the case of RPQs, we would, intuitively speaking, have some-
thing more like sequences of sub-graphs in the case of Datalog. However, since the
output of applying Datalog rules is a set of fixed-arity relations, it is not possible to re-
turn such a sequence; in fact, how to represent the structures that Datalog navigates
is an unexplored area. Instead, Datalog rules can be applied to find pairs of nodes that

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases App–5

x y

m

n

(a) Basic Datalog pattern

x
y1

m1

n1

y2

m2

n2

yk−1

mk

nk

z· · ·

(b) Recursive Datalog pattern (k is arbitrary)

Fig. 12. Illustration of the types of patterns a Datalog programs can query. Here all solid edges are labelled
acts_in and all dashed edges are labelled directs.

are connected in such a manner, or to generate a relational representation of a graph
that contains all such edges navigated, and so forth.

There have been attempts to define Datalog-like languages that are specifically tai-
lored to the requirements of graph database applications, in the spirit of the recursive
rules used in Example B.3. The first of these was GraphLog [Consens and Mendel-
zon 1990], which was designed for querying graphs formed by hypertext documents.
More recently, Reutter et al. [2015a] studied the restriction of Datalog where recur-
sion is only allowed over patterns that output at most two variables; in fact, a number
of languages have been proposed in different settings with similar expressive power
[Fletcher et al. 2015; Libkin et al. 2013; Rudolph and Krötzsch 2013; Arenas et al.
2014; Bourhis et al. 2015]. There have also been attempts to implement query en-
gines that support these languages, specifically over RDF datasets using extensions
of SPARQL [Reutter et al. 2015b; Przyjaciel-Zablocki et al. 2015]. Recently we have
also witnessed proposals that combine user-defined functions into Datalog to obtain a
graph query language more tailored for graph analytic tasks (see e.g. [Seo et al. 2015]).

In summary, the use of Datalog-like languages for querying graphs is an active area
of research being explored from a number of angles. However, as we discuss in the
following section, recursively applying bgps in a declarative manner is not widely sup-
ported within the practical query languages we consider in this survey.

B.4. Complexity considerations
When analysing more expressive variants of path queries, the evaluation complexity
is deeply connected with the structure of the language. For languages such as NREs or
XPath we can find fast evaluation algorithms that are nothing more than extensions
of the algorithms shown for RPQs.

Concerning Datalog-based languages, it is well-known that answering unrestricted
Datalog queries is EXPTIME-complete [Abiteboul et al. 1995]. Hence in practical
settings, restrictions with lower complexity are sometimes considered. One such re-
stricted language is Linear Datalog [Consens and Mendelzon 1990], for which query
evaluation is PSPACE-complete. Other languages such as e.g. Regular Queries [Reut-
ter et al. 2015a], may bound the arity of predicates, which returns query evaluation to
the same complexity class as ngps: NP-complete.

Finally, with respect to regular data path queries of Section B.2, it can be shown
that the base algorithm for RPQs can be modified in order to give a polynomial time
evaluation [Libkin et al. 2016]. On the other hand, extending such queries with more
expressive features seems difficult, as evaluation quickly becomes intractable [Libkin
et al. 2016; Barceló et al. 2015]. Furthermore, implementing these queries using the
unwinding operator, as in Cypher, does also not seem to be the best solution, as the
operator makes the evaluation NP-hard (see Appendix C for details).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

App–6 R. Angles et al.

C. ADDITIONAL QUERY FEATURES
Throughout the survey our main focus is on querying features designed to retrieve
nodes, edges, or paths from a graph. However, most practical query languages also
include ways to manipulate these results, in particular, aggregating them or trans-
forming them into different structures. While the types of operators offered for the
manipulation of results vary significantly amongst different graph query languages,
there are some common features in these languages that we explore in this section.
In particular we look at aggregation functions, path manipulation and graph-to-graph
querying functionalities, and discuss some challenges when implementing these oper-
ations over graphs.

C.1. Aggregation and solution modifiers
In the development of relational databases, the possibility of grouping values and com-
puting statistics over these groups has been recognised as an important feature. In the
case of SQL, the GROUP BY operator allows for grouping values according to some crite-
ria, the COUNT operator allows for counting the number of elements in each such group,
and the MIN, MAX, SUM and AVG operators were included to compute the minimum, max-
imum, sum and average of the elements in each group, respectively (provided that the
group contains values compatible with the operators). These functionalities play such
an important role in data analysis that they have been adopted by graph query lan-
guages. In what follows, we provide some examples of these features for the practical
graph query languages considered in this survey, which will give the reader a clearer
idea of how they are used.

Example C.1. As a first example, assume we have an edge-labelled graph G storing
information about movies and actors, such as the one shown in Figure 8 on page 15.
In order to count the total number of movies in G, we can use the following SPARQL
query:

SELECT COUNT(?movie) AS ?total
WHERE { ?movie :type :Movie . }

As explained in Section 3, the triple ?movie :type :Movie in this query is used to bind
the variable ?movie to the movies occurring in G. The operator COUNT(?movie) is then
used to count the number of values for the variable ?movie, which is stored in the vari-
able ?total as indicated by the command COUNT(?movie) AS ?total. If the variable
?movie contains repeated values (which could happen in more complicated queries),
then by default, duplicates will be counted; to ensure that only distinct values are
counted, the command COUNT(?movie) can be replaced by COUNT(DISTINCT ?movie).

Example C.2. As a second example, assume that for each movie we wish to count
the number of people acting in it. This query can be formulated as follows in SPARQL:

SELECT ?movie COUNT(DISTINCT ?actor) AS ?number_actors
WHERE {

?movie :type :Movie .
?actor :acts_in ?movie . ?actor :type :Person .

}
GROUP BY ?movie

The three triples inside the WHERE clause are used to indicate that for each pair b, c of
values assigned to ?movie and ?actor, respectively, b must be a movie and c must be
a person who acted in b. Then the operator GROUP BY ?movie is used to indicate that
a group must be created for each value b in the variable ?movie, which must contain
all values c for the variable ?actor such that b, c is a valid assignment for ?movie

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases App–7

and ?actor according to the triples in the WHERE clause. Finally, for each value b in
?movie, the operator COUNT(DISTINCT ?actor) counts the number of distinct values in
the group associated to b, which is stored in the variable ?number_actors as indicated
by the command COUNT(DISTINCT ?actor) AS ?number_actors.

Example C.3. Assume now that each movie includes a property that defines its
runtime. With such information we would like to obtain the longest films in the
database. This query can be expressed as follows in Cypher:
MATCH (m:Movie) WITH MAX(m.runtime) AS maxTime
MATCH (m:Movie) WHERE m.runtime = maxTime
RETURN m

The first MATCH clause looks for nodes labelled Movie and stores them in variable m. The
list of movies saved in m is explored by the WITH operator to compute the maximum
runtime. From this first match clause, only the result of the aggregation (maxTime)
can be projected. The second MATCH clause is thus needed to return the movies whose
runtime is equal to the maxTime returned by the first MATCH. The filtered list of movies
– movies with the longest runtime – is returned as the final result of the query. In this
case, we say that the pattern initiated by the first MATCH clause is a sub-query.14

All of the above examples can similarly be expressed in Gremlin.

Finally we briefly note that many practical query languages allow for applying so-
lution modifiers over results, such as to express a limit for a number of results, or an
ordering to apply over results, or an offset that specifies an number of initial results
to skip. These solution modifiers can also be embedded within sub-queries that project
the modified solutions to an outer query.

Example C.4. We can achieve a similar result to Example C.3 by instead using a
solution modifier that orders by runtime and selects the first result:
MATCH (m:Movie) RETURN m ORDER BY m.runtime LIMIT 1

In this case, we require only one MATCH clause. However, this is not precisely equivalent
to Example C.3: if we have multiple movies tied for the longest runtime, here we will
only return one such movie, while previously we would return all such tied movies. To
make the query equivalent, we would instead need a sub-query as follows:
MATCH (m:Movie) WITH m.runtime as maxTime ORDER BY maxTime LIMIT 1
MATCH (m:Movie) WHERE m.runtime = maxTime
RETURN n

As before, we use a sub-query to match any movie with the longest runtime and then
find other movies with the same runtime. Note that unlike Example C.3 and the MAX
aggregate, we could replace LIMIT 1 with SKIP 2 LIMIT 1 to find movies with the third
longest runtime (where we could also replace WITH as WITH DISTINCT to filter ties).

Such solution modifiers are also found in SPARQL and Gremlin.

As one can see, when coupled with basic graph patterns, aggregate operations and
solution modifiers have a similar behaviour as in relational databases. On the other
hand, when we consider navigational queries, such operations impose some unique
challenges not present when dealing with relational data. For example, counting paths
or taking the length of individual paths both impose computational challenges when

14It may seem counter-intuitive to have the sub-query “outside” in Cypher, as in SPARQL the first MATCH
corresponds to a sub-query and would rather be written inside; as such, this is an idiosyncrasy of Cypher.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

App–8 R. Angles et al.

applied in this new context, as were raised in Section 4.1 when discussing the related
problem of returning nodes from a path under bags semantics: if the graph database G
is cyclic, the number of paths can be infinite and paths may have infinite length; on the
other hand, while restrictions such as no-repeated-nodes make the set of paths finite,
counting paths is still associated with a high computational complexity [Valiant 1979;
Arenas et al. 2012; Losemann and Martens 2013]. Still, languages such as Cypher
provide aggregation features that allow for counting such paths or taking their length.

Example C.5. Assume a graph database encoding a road network, where the con-
nectivity between five cities (c1, c2, c3, c4 and c5) is given by five (bidirectional) routes
(c1 ↔ c2, c1 ↔ c3, c2 ↔ c4, c4 ↔ c5 and c3 ↔ c5). The longest route between cities c1 and
c5 can be expressed in Cypher by the following query:

MATCH p = (a:City {name:"c1"})-[*]->(b:City {name:"c5"})
WITH MAX(length(p)) AS maxLength
MATCH p = (a:City {name:"c1"})-[*]->(b:City {name:"c5"})
WHERE length(p) = maxLength
RETURN p

In this example, the MATCH clause is used twice to store all the paths between cities c1
and c5 in variable p (since the sub-query can only return the result of the aggregate;
see Example C.3). The WITH clause combines the operators MAX and length to obtain
maxLength, i.e., the length of the longest path. The WHERE clause selects paths whose
length is equal to maxLength. The final result is the list of the longest paths such that
each path is encoded as a collection of nodes and edges, which in this case would be:

[{name: c1}, {}, {name: c2}, {}, {name: c4}, {}, {name: c5}]

This is the longest path from city c1 to city c5 without a repeated edge. Note that
without the restriction on repeating edges, we could have infinite length paths (for
example, subsequently going back and forth between c3 and c5 ad infinitum).

In Cypher, we can also, for example, count all paths.

Example C.6. Consider a query that counts the number of paths from a source
node to a target node in a graph. This query is expressed in Cypher as follows:

MATCH p = (:A)-[*]->(:B)
RETURN COUNT(p)

The MATCH clause in this query stores the paths from a node with label A to a node with
label B in the variable p, and the COUNT clause counts the number of paths stored in p;
again the no-repeated-edges restriction avoids infinity in the case of cycles.

While in Cypher, the restriction of not repeating edges is offered by default, in Grem-
lin, a call to simplePath() is required to ensure that nodes are not repeated.

Example C.7. The following Gremlin query computes all paths between nodes with
labels A and B such that no path visits the same node twice:

G.V().hasLabel('A').repeat(out().simplePath()).until(hasLabel('B')).emit().path()

The simplePath() function filters paths that repeat nodes. Interestingly, Gremlin re-
turns paths ordered by ascending length, and thus by keeping only the first answer we
can use this query to obtain the shortest path.

As opposed to the case of relational aggregates, many questions about aggregation
functions on paths remain open. In particular, understanding the expressive power of

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases App–9

these functions and pinpointing the exact complexity of evaluating them are important
open issues that deserve further investigation.

C.2. Path unwinding
Path unwinding refers to the idea of projecting parts of a path. As previously discussed,
SPARQL queries cannot return paths: they can either check for the existence of paths
satisfying some conditions, or return the set of start- and/or end-nodes of such paths;
thus, SPARQL does not provide any path-ungrouping operator. On the other hand,
Cypher provides functions to get path elements independently.

Example C.8. Recall the road network described in Example C.5. When travelling
between cities c1 and a city c5, we may wish to find two different disjoint routes (vis-
iting disjoint intermediate cities) allowing us to see new scenery on each part of our
journey. A query finding two such paths can be expressed in Cypher as follows:
MATCH p1 = (a:City {name:"c1"}) -[*]- (b:City {name:"c5"})
MATCH p2 = (a:City {name:"c1"}) -[*]- (b:City {name:"c5"})
WHERE none(x IN nodes(p2) WHERE (x IN nodes(p1) AND x<>a AND x<>b))
RETURN p1, p2

The variables a and b store the nodes representing the cities with names c1 and c5,
respectively. The variables p1 and p2 then store paths between these two cities; these
paths are undirected and of arbitrary length as indicated by the expression -[*]-.
The expression nodes(path) returns the nodes in the path as a collection, while
relationships(path) returns the edges in the path as a collection. The path disjoint-
ness condition is defined by using the none operator (which evaluates to true if the
condition is false for all elements of a collection). In more detail, the WHERE clause spec-
ifies that for two paths p1 and p2 to be returned, there can be no node x such that: (i) x
is a node in the path p2 as indicated by the condition x IN nodes(p2); (ii) x is a node in
the path p1 as indicated by the condition x IN nodes(p1); and (iii) x is different from
a and b as indicated by the condition x<>a AND x<>b. In other words, p1 and p2 are
returned only if they do not share any nodes aside from a and b.

Although useful, queries such as the one above are inherently difficult to evaluate.
In fact, given a graph G and nodes b and c in G, the problem of verifying whether there
exist two paths in G between b and c with no nodes in common except for b and c is
known to be NP-complete (this problem is referred as the two-disjoint-paths problem
in the literature [Garey and Johnson 1990]). Hence we see that adding path unwinding
to a query language can lead to issues with computational complexity when combined
with other features of the language: various well-known hard problems can be trivially
expressed using such combinations of features.

Gremlin has similar features for path unwinding, where nodes and edges can be
extracted from paths and processed with subsequent operators.

C.3. Graph-to-Graph queries
Both the input and output of an SQL query are relational tables, so this language
is compositional in the sense that the output to a query can be used as the input of
another query. Along similar lines, graph query languages provide functionalities that
allow to return a graph as the result of a query.

In the case of SPARQL, the SELECT operator can be replaced by the CONSTRUCT op-
erator in order to produce an RDF graph as the output of a query. More specifically,
a SPARQL query of the form CONSTRUCT { t1 t2 ... tn } WHERE { ... } produces an
RDF graph as output, where each ti is an RDF triple that can contain variables and
constants, and where the WHERE clause is defined as usual. To produce the answer to

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

App–10 R. Angles et al.

such a query, first the WHERE clause is evaluated to produce all possible matches. Next,
each match is applied to replace the variables occurring in t1, t2, . . ., tn by constants.
A match may not have a value for a variable occurring in a specific triple ti because of
the use of the operators OPTIONAL and UNION; in this case, an output RDF triple is not
produced from ti for that match. Finally, RDF graphs are defined as unordered sets,
meaning that duplicates and ordering are not preserved in the output graph.

Example C.9. Take again the RDF graph in Figure 8 on page 15, which we denote
by G. To create an RDF graph G′ storing information about people that act together in
some movie, we can use the following query:
CONSTRUCT { ?actor1 :act_together ?actor2 . }
WHERE {

?movie :type :Movie .
?actor1 :acts_in ?movie . ?actor2 :acts_in ?movie .
FILTER (?actor1 != ?actor2)

}

For each assignment b, c1, c2 generated by evaluating the WHERE clause for the vari-
ables ?movie, ?actor1, ?actor2, respectively, we have that c1 and c2 act together in
the movie b, and also that c1 and c2 are distinct actors as indicated by the com-
mand FILTER (?actor1 != ?actor2). This assignment replaces ?actor1 by c1 and
?actor2 by c2 in the CONSTRUCT clause to produce the triple c1 :act_together c2. In
the case of Figure 8, we would thus create a new RDF graph with two edges labelled
:act_together connecting :Clint_Eastwood to :Anna_Levine, and vice versa.

In the case of Cypher, one can include a CREATE clause inside a query expression to
create graph elements (nodes and edges) from the pattern matching step.

Example C.10. Consider the property graph with movie data from Figure 3 on
page 6. Similarly to Example C.9, if we want to construct a graph containing only
the pairs of actors that co-starred in a movie, we can use the following Cypher query:
MATCH (a:Person)-[:acts_in]->(:Movie)<-[:acts_in]-(c:Person)
WHERE a <> c
CREATE (a)-[r:act_together]->(c)
RETURN r

The CREATE clause will then “materialise” the graph containing all pairs of actors that
co-starred in the same movie. The RETURN clause then specifies that all of the edges
of this graph should be returned. We also add a WHERE clause to distinguish a from c:
although Cypher adopts a no-repeated-edge semantics, there may be multiple edges
from an actor to a movie, for example, if the actor plays multiple roles in that movie,
in which case we would generate vacuous loops on such actors in the output.

A similar mechanism for graph creation is provided by Gremlin.

Example C.11. Consider now a transportation network that connects two cities if
there is a direct bus link between them. Suppose we want to travel, but are only willing
to change the bus once. To see our options, we could add an edge labelled twoHoplink
between any two cities reachable from each other by at most one change of bus. This
can be done using the following Gremlin query:
G.V().as("a").out().out().as("b").addE("twoHoplink").from("a").to("b")

In the above expression: G.V().as("a") obtains the list of nodes in the graph
and store this list in variable a; .out().out().as("b") obtains the nodes b reach-
able from each node in a, considering a single intermediate node on this path;

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases App–11

addE("twoHoplink").from("a").to("b") creates edges labelled twoHoplink between
each pair of connected nodes stored in a and b.

The graph-to-graph queries illustrated in the examples above are a rather new fea-
ture for graph query languages; currently there are few studies about their basic prop-
erties and the effects of combining them with other query features. Some work involv-
ing the expressive power and the composition of queries using CONSTRUCT in SPARQL
has been carried out [Kostylev et al. 2015; Polleres et al. 2016; Arenas and Ugarte
2016]. However, the use of these types of queries in Cypher or Gremlin is currently
unexplored in the literature, and may be an interesting topic for future research.

D. FURTHER EXTENSIONS
A number of extended features have been proposed and/or included in the SPARQL,
Cypher and Gremlin languages. Though the focus of this survey is on the core features
of graph matching and navigational queries, we give a brief overview of some of the
more prominent extensions, both as included in the respective specifications of the
query languages themselves, and as proposed by third parties in the literature.

With respect to official extensions, SPARQL 1.1. Update [Gearon et al. 2013] de-
fines a specification for making updates to the underlying dataset that the SPARQL
engine queries, allowing to add, remove or modify graphs or triples with graphs in
a declarative manner; likewise Cypher offers primitives to update nodes, edges and
the labels and attributes associated with them [The Neo4j Team 2016], while Grem-
lin supports updates through use of the Blueprints API that forms part of the Tin-
kerPop framework [Apache TinkerPop 2017]. In order to standardise a mechanism
for processing queries over data spanning multiple sources, SPARQL 1.1 Federated
Query [Prud’hommeaux and Buil-Aranda 2013] specifies how SPARQL queries can
contain nested queries that are sent to and executed by remote SPARQL services, with
the results returned to the outer query for further local processing. With respect to
reasoning, SPARQL 1.1 Entailment [Glimm and Ogbuji 2013] provides details on how
various types of ontological and rule-based entailment regimes can be applied to gen-
erate further answers from implicit knowledge during the graph matching process.

Aside from official extensions, a wide variety of extensions have been proposed by
third parties in the research literature, particularly for the SPARQL language. Various
such extensions are concerned with supporting additional meta-information for RDF
data: two such proposals are SPARQL* [Hartig and Thompson 2014] and AnQL [Zim-
mermann et al. 2012], which both describe general frameworks for reifying or anno-
tating RDF data (respectively), providing analogous query features in SPARQL. Other
general extensions of interest include SPARQLAR [Frosini et al. 2017], which allows for
performing query approximation and relaxation to also return “near answers”; SPAR-
QLog [Bry et al. 2009], which extends SPARQL with rules and more flexible forms
of quantification, additionally defining fragments that maintain desirable complex-
ity results; XSPARQL [Bischof et al. 2012], which allows for federating queries over
SPARQL, XML (through XQuery) and relational databases (through SQL) in a unified
manner; as well as work by Lausen et al. [2008] on using SPARQL (and a proposed
extension thereof) to specify relational-like constraints over RDF graphs.

Other proposed extensions of SPARQL target specific domains or types of ap-
plications, including tSPARQL [Hartig 2009], which allows for specifying and pro-
cessing trust annotations in terms of which results can be trusted and why; SciS-
PARQL [Andrejev and Risch 2012], which provides primitives to deal with nu-
meric arrays of (scientific) information; SPARQL-MM [Kurz et al. 2015], which

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

App–12 R. Angles et al.

proposes user-defined functions to help when querying meta-data about multi-
media artefacts; GeoSPARQL [Perry and Herring 2012; Battle and Kolas 2012],
stSPARQL [Koubarakis and Kyzirakos 2010] and SPARQL-ST [Perry et al. 2011],
which propose extensions to support spatial and temporal queries; EP-SPARQL [Ani-
cic et al. 2011], C-SPARQL [Barbieri et al. 2010] and Streaming SPARQL [Bolles et al.
2008], which deal with processing dynamic information and support, offering event
processing, reasoning and querying over windows of streaming data, and so forth.

The above discussion suggests that research in the areas of graph querying and an-
alytics is ongoing, with various extended features being continuously proposed. Graph
query languages are thus sure to evolve to capture more and more features. Rather
than trying to cover all such features in detail, in this survey, we focus on capturing a
core set of features that are foundational for querying graphs in a declarative manner
and that thus form the common backbone of modern graph query languages.

ADDITIONAL REFERENCES FOR THE APPENDIX
Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley.
Andrej Andrejev and Tore Risch. 2012. Scientific SPARQL: Semantic Web Queries over Scientific Data. In

International Conference on Data Engineering (ICDE). 5–10.
Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic. 2011. EP-SPARQL: a unified language

for event processing and stream reasoning. In World Wide Web (WWW). 635–644.
Apache TinkerPop. 2017. TinkerPop3 Documentation v.3.2.5. http://tinkerpop.apache.org/docs/current/

reference/. (June 2017).
Marcelo Arenas, Sebastián Conca, and Jorge Pérez. 2012. Counting beyond a Yottabyte, or how SPARQL 1.1

property paths will prevent adoption of the standard. In World Wide Web (WWW). 629–638.
Marcelo Arenas, Georg Gottlob, and Andreas Pieris. 2014. Expressive languages for querying the semantic

web. In Principles of Database Systems (PODS). ACM, 14–26.
Marcelo Arenas and Martín Ugarte. 2016. Designing a Query Language for RDF: Marrying Open and Closed

Worlds. In Principles of Database Systems (PODS). 225–236.
Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and Michael Grossniklaus.

2010. C-SPARQL: a Continuous Query Language for RDF Data Streams. Int. J. Semantic Computing 4,
1 (2010), 3–25.

Pablo Barceló, Gaëlle Fontaine, and Anthony Widjaja Lin. 2015. Expressive Path Queries on Graphs with
Data. Logical Methods in Computer Science 11, 4 (2015).

Pablo Barceló, Jorge Pérez, and Juan Reutter. 2013. Schema mappings and data exchange for graph
databases. In International Conference on Database Theory (ICDT). ACM, 189–200.

Pablo Barceló, Jorge Pérez, and Juan L. Reutter. 2012. Relative Expressiveness of Nested Regular Expres-
sions. In Alberto Mendelzon Workshop (AMW). 180–195.

Robert Battle and Dave Kolas. 2012. Enabling the geospatial Semantic Web with Parliament and
GeoSPARQL. Semantic Web 3, 4 (2012), 355–370.

Meghyn Bienvenu, Diego Calvanese, Magdalena Ortiz, and Mantas Simkus. 2014. Nested Regular Path
Queries in Description Logics. In Knowledge Representation and Reasoning (KR).

Stefan Bischof, Stefan Decker, Thomas Krennwallner, Nuno Lopes, and Axel Polleres. 2012. Mapping be-
tween RDF and XML with XSPARQL. J. Data Semantics 1, 3 (2012), 147–185.

Andre Bolles, Marco Grawunder, and Jonas Jacobi. 2008. Streaming SPARQL - Extending SPARQL to Pro-
cess Data Streams. In European Semantic Web Conference (ESWC). 448–462.

Pierre Bourhis, Markus Krötzsch, and Sebastian Rudolph. 2015. Reasonable Highly Expressive Query Lan-
guages. In International Joint Conference on Artificial Intelligence (IJCAI). 2826–2832.

François Bry, Tim Furche, Bruno Marnette, Clemens Ley, Benedikt Linse, and Olga Poppe. 2009. SPAR-
QLog: SPARQL with Rules and Quantification. In Semantic Web Information Management – A Model-
Based Perspective. 341–370.

Mariano P. Consens and Alberto O. Mendelzon. 1990. GraphLog: a Visual Formalism for Real Life Recursion.
In Principles of Database Systems (PODS). 404–416.

Wenfei Fan. 2012. Graph pattern matching revised for social network analysis. In International Conference
on Database Theory (ICDT). 8–21.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Foundations of Modern Query Languages for Graph Databases App–13

Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Yinghui Wu. 2011. Adding regular expressions to graph
reachability and pattern queries. In International Conference on Data Engineering (ICDE). 39–50.

Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, Yinghui Wu, and Yunpeng Wu. 2010a. Graph Pattern
Matching: From Intractable to Polynomial Time. Very Large Data Bases (PVLDB) 3, 1 (2010), 264–275.

Wenfei Fan, Jianzhong Li, Shuai Ma, Hongzhi Wang, and Yinghui Wu. 2010b. Graph Homomorphism Re-
visited for Graph Matching. Very Large Data Bases (PVLDB) 3, 1 (2010), 1161–1172.

George HL Fletcher, Marc Gyssens, Dirk Leinders, Dimitri Surinx, Jan Van den Bussche, Dirk Van Gucht,
Stijn Vansummeren, and Yuqing Wu. 2015. Relative expressive power of navigational querying on
graphs. Information Sciences 298 (2015), 390–406.

Riccardo Frosini, Andrea Calì, Alexandra Poulovassilis, and Peter T. Wood. 2017. Flexible query processing
for SPARQL. Semantic Web 8, 4 (2017), 533–563.

Michael R. Garey and David S. Johnson. 1990. Computers and Intractability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, NY, USA.

Paula Gearon, Alexandre Passant, and Axel Polleres. 2013. SPARQL 1.1 Update. W3C Recommendation.
(21 March 2013). https://www.w3.org/TR/sparql11-update/.

Birte Glimm and Chimezie Ogbuji. 2013. SPARQL 1.1 Entailment Regimes. W3C Recommendation. (21
March 2013). https://www.w3.org/TR/sparql11-entailment/.

Olaf Hartig. 2009. Querying Trust in RDF Data with tSPARQL. In European Semantic Web Conference
(ESWC). 5–20.

Olaf Hartig and Bryan Thompson. 2014. Foundations of an Alternative Approach to Reification in RDF.
CoRR abs/1406.3399 (2014).

Jelle Hellings, Bart Kuijpers, Jan Van den Bussche, and Xiaowang Zhang. 2013. Walk logic as a framework
for path query languages on graph databases. In International Conference on Database Theory (ICDT).
117–128.

Monika Rauch Henzinger, Thomas A. Henzinger, and Peter W. Kopke. 1995. Computing Simulations on
Finite and Infinite Graphs. In 36th Annual Symposium on Foundations of Computer Science. 453–462.

Egor V. Kostylev, Juan L. Reutter, and Martín Ugarte. 2015. CONSTRUCT Queries in SPARQL. In Interna-
tional Conference on Database Theory (ICDT). 212–229.

Manolis Koubarakis and Kostis Kyzirakos. 2010. Modeling and Querying Metadata in the Semantic Sensor
Web: The Model stRDF and the Query Language stSPARQL. In European Semantic Web Conference
(ESWC). 425–439.

Thomas Kurz, Kai Schlegel, and Harald Kosch. 2015. Enabling access to Linked Media with SPARQL-MM.
In World Wide Web (WWW), Companion. 721–726.

Georg Lausen, Michael Meier, and Michael Schmidt. 2008. SPARQLing constraints for RDF. In Extending
Database Technology (EDBT). 499–509.

Leonid Libkin, Wim Martens, and Domagoj Vrgoč. 2016. Querying Graphs with Data. J. ACM 63, 2 (2016),
14.

Leonid Libkin, Juan Reutter, and Domagoj Vrgoč. 2013. Trial for RDF: adapting graph query languages for
RDF data. In Principles of Database Systems (PODS). ACM, 201–212.

Leonid Libkin and Domagoj Vrgoč. 2012. Regular path queries on graphs with data. In International Con-
ference on Database Theory (ICDT). 74–85.

Katja Losemann and Wim Martens. 2013. The complexity of regular expressions and property paths in
SPARQL. ACM Trans. Database Syst. 38, 4 (2013), 24.

Shuai Ma, Yang Cao, Wenfei Fan, Jinpeng Huai, and Tianyu Wo. 2014. Strong simulation: Capturing topol-
ogy in graph pattern matching. ACM Trans. Database Syst. 39, 1 (2014), 4:1–4:46.

Robin Milner. 1989. Communication and concurrency. Prentice Hall.
Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. 2010. nSPARQL: A navigational language for RDF. J.

Web Sem. 8, 4 (2010), 255–270.
Matthew Perry and John Herring. 2012. GeoSPARQL – A Geographic Query Language for RDF Data. Open

Geospatial Consortium Implementation Standard. (2012). http://www.opengeospatial.org/standards/
geosparql

Matthew Perry, Prateek Jain, and Amit P. Sheth. 2011. SPARQL-ST: Extending SPARQL to Support Spa-
tiotemporal Queries. In Geospatial Semantics and the Semantic Web – Foundations, Algorithms, and
Applications. 61–86.

Axel Polleres, Juan L. Reutter, and Egor V. Kostylev. 2016. Nested Constructs vs. Sub-Selects in SPARQL.
In Alberto Mendelzon Workshop (AMW).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

App–14 R. Angles et al.

Eric Prud’hommeaux and Carlos Buil-Aranda. 2013. SPARQL 1.1 Federated Query. W3C Recommendation.
(21 March 2013). http://www.w3.org/TR/sparql11-federated-query/.

Martin Przyjaciel-Zablocki, Alexander Schätzle, and Georg Lausen. 2015. TriAL-QL: Distributed Processing
of Navigational Queries. In Web and Databases (WebDB). ACM, 48–54.

Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. 2015a. Regular Queries on Graph Databases. In
International Conference on Database Theory (ICDT). 177–194.

Juan L. Reutter, Adrián Soto, and Domagoj Vrgoč. 2015b. Recursion in SPARQL. In The Semantic Web
(ISWC). 19–35.

Sebastian Rudolph and Markus Krötzsch. 2013. Flag & check: Data access with monadically defined queries.
In Principles of Database Systems (PODS). ACM, 151–162.

Jiwon Seo, Stephen Guo, and Monica S Lam. 2015. Socialite: An efficient graph query language based on
datalog. IEEE Transactions on Knowledge and Data Engineering 27, 7 (2015), 1824–1837.

The Neo4j Team. 2016. The Neo4j Manual v3.0. http://neo4j.com/docs/stable/. (2016).
Julian R. Ullmann. 1976. An Algorithm for Subgraph Isomorphism. J. ACM 23, 1 (1976), 31–42.
Leslie G. Valiant. 1979. The Complexity of Enumeration and Reliability Problems. SIAM J. Comput. 8, 3

(1979), 410–421.
Xpath 1999. XML Path Language (XPath). http://www.w3.org/TR/xpath. (1999).
Antoine Zimmermann, Nuno Lopes, Axel Polleres, and Umberto Straccia. 2012. A general framework for

representing, reasoning and querying with annotated Semantic Web data. J. Web Sem. 11 (2012), 72–
95.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

