
Space complexity

IIC3242

IIC3242 – Time and space complexity II 1 / 52

Conventions for space complexity

When dealing with space complexity we use Turing machines with
input and output

The input string is not accounted in the complexity cost:

Definition

If M is a k-tape Turing machine with input and output, then the
space used by M on input w is the total number of cells accessed
by the heads of M on its work tapes (tapes 2 through k − 1).

For a decider the output tape is not important, so sometimes we
just use the input tape and the work tapes

We can use as many tapes as we wish (recall the proof that k-tape
TM = 1 one tape TM)

IIC3242 – Time and space complexity II 2 / 52

Space complexity

No we can define

Definition

For a k-tape deterministic TM with input/output the space
complexity function sM(n) is defined as the maximum number of
cells on work tapes that M scans when processing any input of
length n.

For a non-deterministic machine this is the maximum over all
branches of computation and all inputs of length n.

In both cases we say that the machine M runs in space sM(n), or
that sM(n) is the space complexity of M.

IIC3242 – Time and space complexity II 3 / 52

Space complexity classes

Just as before:

Definition

Let f : N→ N be a function. We define:

DSPACE(f (n)) = {L | L is decided by an O(f (n))

space deterministic Turing machine with input/output}.

NSPACE(f (n)) = {L | L is decided by an O(f (n))

space non-deterministic Turing machine with input/output}.

IIC3242 – Time and space complexity II 4 / 52

Space complexity: examples

It is easy to see that SAT is in DSPACE(n):

M = On input 〈ϕ〉, for a boolean formula ϕ:

1. For each truth assignment to variables of ϕ

2. Evaluate ϕ on this assignment

3. If we ever get 1 accept, otherwise reject

We reuse space for assignments (we only need to count up to
2numer of variables)

IIC3242 – Time and space complexity II 5 / 52

Space complexity: examples

ALLNFA = {〈A〉 | A is an NFA and L(A) 6= Σ∗}

Note: A is not universal iff A 6= ∅
I So we can just search if the powerset automaton for the

complement is not empty

M = On input 〈A〉, for an NFA A:

1. Write start state of A on the work tape

2. Repeat 2q times, for q the number of states of A:

3. Nondeterministically pick a symbol of Σ

4. Write the next state (remember current and next state)

5. If we ever accept accept, otherwise reject

Clearly in NSPACE(n)

IIC3242 – Time and space complexity II 6 / 52

Space complexity classes

As in the time complexity case the most important classes are:

Definition

PSPACE =
⋃
k

DSPACE(nk)

NPSPACE =
⋃
k

NSPACE(nk)

For these guys the input tape does not matter. Why?

IIC3242 – Time and space complexity II 7 / 52

Is PSPACE=NPSPACE worth a million?

No, not really (recall in our examples that space can be reused)

Theorem (Savitch)

When f (n) ≥ logn, then

NSPACE(f (n)) = DSPACE(f 2(n)).

Proof: A neat idea: computation = graph.

Consider an f (n)-space nondeterministic machine M (with input)

A configuration is defined as before

IIC3242 – Time and space complexity II 8 / 52

Savitch’s theorem: configuration graph

How many configurations are there on input w of length n?

I We have k tapes, but input/output don’t count

I A configuration: #u1qv1#u2qv2# · · ·#ukqvk#

I Representing configuration:
(q, i ,w2, p2,w3, p3, . . . ,wk−1, pk−1)

I So |Q| ·n · k · f (n) · |Γ|(k−2)·f (n) = 2O(f (n)) (recall u1v1 is input)

I Above we use f (n) ≥ logn

Configuration graph of M on w (notation G (M,w)):

I Nodes: Configurations of M on w

I If C1 yields C2 there is an edge between them

IIC3242 – Time and space complexity II 9 / 52

Savitch’s theorem: configuration graph

No need to represent the graph as adjacency list/matrix

We just store the machine and input

And look up if there is an edge

From input string we just look up the position

So we only need to count

IIC3242 – Time and space complexity II 10 / 52

Savitch’s theorem: configuration graph

From the definition we have:

w is accepted by M iff there is a path in the configuration graph
G (M,w) from an initial to an accepting state

So we only need to solve the reachability problem in this graph
efficiently to get the desired result

IIC3242 – Time and space complexity II 11 / 52

Savitch’s theorem: the meat

Recall:

PATH = {〈G , s, t〉 | G is a directed graph with a path from s to t}

In fact this is what we want:

Theorem

PATH is in DSPACE(log2n).

IIC3242 – Time and space complexity II 12 / 52

Savitch’s theorem: the meat

Recall:

PATH = {〈G , s, t〉 | G is a directed graph with a path from s to t}

In fact this is what we want:

Theorem

PATH is in DSPACE(log2n).

IIC3242 – Time and space complexity II 12 / 52

Savitch’s theorem: fast reachability

Proof: Let G be a graph with n nodes and x , y ∈ G .

We define a predicate REACH(x , y , i) which is true iff there is a
path in G from x to y of length at most 2i

If we solve REACH(x , y , dlogne) we solve PATH

IIC3242 – Time and space complexity II 13 / 52

Savitch’s theorem: fast reachability

To solve REACH(x , y , i) we use a DTM with input and two work
tapes:

I Input is the adjacency matrix

I The first work tape has triples of the form (x , y , i)

I Note that each triple is of the size 3logn roughly

I The second work tape is just for maintaining indices (counting
up to n2)

Key observation:

I A path from x to y of length ≤ 2i

I Has a midpoint z with:

I A path from x to z of length ≤ 2i−1

I And a path from z to y of length ≤ 2i−1

IIC3242 – Time and space complexity II 14 / 52

Savitch’s theorem: fast reachability

The algorithm is recursive:

REACH(x , y , i) :

1. If i = 0 check if x = y , or there is an edge between them

2. If yes return true, else false

3. If i ≥ 1 then for all z ∈ G :

4. Run recursively REACH(x , z , i − 1) and REACH(z , y , i − 1)

5. If both return true return true

IIC3242 – Time and space complexity II 15 / 52

Savitch’s theorem: fast reachability

How to run recursive calls efficiently?

I Idea: reuse the space

I Generate the nodes z one after another

I Each time new z is used we reuse the space
I For a new z :

I Add (x , z , i − 1) to the first work tape
I Start working on this problem
I If REACH(x , z , i − 1) is false go to the next z (erase the

triples for this one)
I If REACH(x , z , i − 1) is true, obtain y from the triple to the

left and work on REACH(z , y , i − 1)
I If REACH(z , y , i − 1) is false move to next z else return true

First work string = activation record stack

Second work string = maintain indices

IIC3242 – Time and space complexity II 16 / 52

Savitch’s theorem: fast reachability

How much does this take?

Recursion depth is logn (path of length n)

Each triple is 3logn, so the first work tape uses log2n

The second one just counts up to logn2 (number of edges)

We get the desired bound

IIC3242 – Time and space complexity II 17 / 52

Savitch’s theorem: proof done

We get Savitch’s theorem by using the previous algorithm on
G (M,w)

Observe:

I Size of G (M,w) is 2O(f (n))

I So we run REACH(start, accept,O(f (n)))

I So it runs in O(f 2(n))

I Note that we have to repeat this for every (accepting)
configuration

I But for this we reuse space again: we just need to count up to
2O(f (n))

IIC3242 – Time and space complexity II 18 / 52

Still no $$$

As a corollary we get:

Corollary

PSPACE= NPSPACE.

But at least we can play games (in a few slides)

IIC3242 – Time and space complexity II 19 / 52

PSPACE-completeness

As before we are interested in complete problems.

Definition

A language B is PSPACE-complete if:

1. B ∈ PSPACE and;

2. Every language A ∈ PSPACE is reducible to B.

So which reduction do we have to use?

In this case it can be either one, so we use the easier.

Could we use PSPACE-reductions?

IIC3242 – Time and space complexity II 20 / 52

PSPACE-completeness: TQBF

A quantified boolean formula is of the form:

Q1x1Q2x2 . . .Qkxkϕ

where:

I Qi ∈ {∀, ∃}; and

I ϕ is a propositional formula using the variables x1, . . . , xk .

Semantics is defined as for first-order formulas.

Which one is true:

I ∃y∀x(x ∨ y) ∧ (¬x ∨ ¬y)

I ∀y∃x(x ∨ y) ∧ (¬x ∨ ¬y)

IIC3242 – Time and space complexity II 21 / 52

PSPACE-completeness: TQBF

TQBF = {〈φ〉 | φ is a true quantified boolean formula}

Theorem

TQBF is PSPACE-complete.

IIC3242 – Time and space complexity II 22 / 52

PSPACE-completeness: TQBF

Proof: Here is a PSPACE-machine for TQBF:
M = On input 〈φ〉, for φ a quantified boolean formula:

1. If there are no quantifiers evaluate the expression remaining

2. If φ = ∀xϕ recursively call M on ϕ where each occurrence of
x is replaced first by 1 then by 0. If both accept accept,
otherwise reject

3. If φ = ∃xϕ recursively call M on ϕ where each occurrence of
x is replaced first by 1 then by 0. If either accepts accept,
otherwise reject

Lower bound uses the idea from Cook-Levin to code configurations
using variables

IIC3242 – Time and space complexity II 23 / 52

PSPACE-completeness: TQBF

Let A be a language decided by a DTM M running in space nk

For a word w we construct a QBF that is true iff M accepts w

We use variables xi ,s with i a tape position and s a tape symbol a,
or a symbol aq (recall HORNSAT)

A configuration c can be encoded using the variables xi ,s

If c1 and c2 are sets of variables and t > 0:

I We construct φc1,c2,t
I Which is true iff M can go from c1 to c2 in at most t steps

I When c1 and c2 encode actual configurations of M

IIC3242 – Time and space complexity II 24 / 52

PSPACE-completeness: TQBF

A DTM using space f (n) has at most h = 2df (n) configurations on
input of length n

So we just use φcinit ,caccept ,h for our reduction

For t = 1, φc1,c2,t is easy to construct (how?)

For t > 1 we want to split the formula in 2:

φc1,c2,t = ∃m[φc1,m,d t
2
e ∧ φm,c2,d t2 e

]

Here ∃m is a shorthand for ∃xm,1∃xm,2 . . . ∃xm,l (m represents a
configuration, so l = nk)

Why does this not work?

IIC3242 – Time and space complexity II 25 / 52

PSPACE-completeness: TQBF

We use:

φc1,c2,t = ∃m∀(c3, c4) ∈ {(c1,m), (m, c2)}[φc3,c4,d t2 e]

Here ∀x ∈ {y , z}[. . .] = ∀x [(x = y ∨ x = z)→ . . .]

In each step the formula grows by the size of a configuration

And we have log(2df (n)) steps, so total poly-size

IIC3242 – Time and space complexity II 26 / 52

TQBF as a game

Consider the formula:

φ = ∃x1∀x2∃x3 . . .Qxk [ϕ]

I Quantifiers are alternating

I φ is a game between Player E and Player A

I E selects values for ∃ and A for ∀ variables

I This defines a valuation of variables

I E wins if φ is true, A if it is false under this valuation

This is a game associated with φ

IIC3242 – Time and space complexity II 27 / 52

PSPACE and games

Example:

φ = ∃x1∀x2∃x3[(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3)]

One play: E picks x1 = 1, A x2 = 0, E x3 = 1; E wins

In fact: E can always win (x1 = 1 and x3 = ¬x2)

E has a wining strategy

Winning strategy for E = E wins no matter how A plays

IIC3242 – Time and space complexity II 28 / 52

PSPACE and games

Example:

φ = ∃x1∀x2∃x3[(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3)]

Here A has a winning strategy (x2 = 0)

IIC3242 – Time and space complexity II 29 / 52

PSPACE and games

FORMULA-GAME = {〈φ〉 | Player E has a winning strategy

in a game associated with φ}

Theorem

FORMULA-GAME is PSPACE-complete.

Proof: Show that this problem is the same as TQBF.

Hint: if the quantifiers do not alternate add ones that do and
dummy clauses with variables they use

IIC3242 – Time and space complexity II 30 / 52

PSPACE and games: generalized geography

Game of geography:

I Player I names a city c

I Player II names a city d starting with the last letter of c

I Player I does the same for d

I They carry on

I No repetitions allowed

I If a player can’t make a move he/she loses

IIC3242 – Time and space complexity II 31 / 52

PSPACE and games: generalized geography

Visually we are traversing the graph:

IIC3242 – Time and space complexity II 32 / 52

PSPACE and games: generalized geography

Abstraction of this:

I Take a graph with a designated node

I Player I moves from this node

I Then Player II, etc.

I No repeated nodes are allowed (a simple path)

I The goal is to force a player in a position with o further moves

IIC3242 – Time and space complexity II 33 / 52

PSPACE and games: generalized geography

Here Player I has a winning strategy

If the edge from 3 to 6 is reversed Player II has a winning strategy

IIC3242 – Time and space complexity II 34 / 52

PSPACE and games: generalized geography

GG = {〈G , b〉 | Player I has a winning strategy for the

generalized geography played on graph G starting at node b}

Theorem

GG is PSPACE-complete.

Proof: Membership in PSPACE is similar as for TQBF.

How would this go?

IIC3242 – Time and space complexity II 35 / 52

PSPACE and games: generalized geography

PSPACE-hardness is more interesting

We do a reduction from FORMULA-GAME

Take φ = ∃x1∀x2∃x3 . . .Qxk [ϕ]

Wlog a formula φ starts and ends with ∃ and alternates between
∃,∀

Wlog ϕ is in conjunctive normal form

We construct a graph G such that Player I has a winning strategy
iff φ is true

IIC3242 – Time and space complexity II 36 / 52

Generalized geography: left part of G

IIC3242 – Time and space complexity II 37 / 52

Generalized geography: left part of G

I One diamond per variable

I Player I starts (left means x1 = 1, right 0)

I Then Player II goes down, then Player I

I Now Player II goes to diamond of x2, etc.

I At the end we have ∃xk
I So Player I’s last move in this part is to c

This defines a valuation of x1, . . . , xk

Now we move to the right side of the graph (checking if φ is true
for this valuation)

IIC3242 – Time and space complexity II 38 / 52

Generalized geography: right part of G

The right path has:

I A node for each clause (for II to pick)

I A node for each literal in the clause (for I to pick)

I An edge from c to clause

I An edge from clause to its literals

I An edge from literal to left side of G

I The last ones connect xi to left side of the diamond for xi
I And xi with the right side of the diamond

IIC3242 – Time and space complexity II 39 / 52

Generalized geography: the graph G

φ = ∃x1∀xk . . . ∃xk [(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ . . .) ∧ . . .]

IIC3242 – Time and space complexity II 40 / 52

Generalized geography: the graph G

Show that φ is true iff Player I has a winning strategy in G , b

Note that the reduction is both poly-time and logspace

Pick either one

IIC3242 – Time and space complexity II 41 / 52

More games

Standard boar games (chess, go) are easy for complexity

Note: board = fixed size, so no input variability

Complexity is dumb about this (DeepBlue)

But if we generalize we get PSPACE-complete problems

Which shows that the reasoning behind these games is difficult

IIC3242 – Time and space complexity II 42 / 52

A very instructive PSPACE-reduction

Notation

L(r) is the language of a regular expression r .

A regular expression r1 is contained in a regular expression r2 if
L(r1) ⊆ L(r2).

I Example: (01)∗ is contained in (0 + 1)∗

Notation

r1 ⊆ r2 : r1 is contained in r2.

IIC3242 – Time and space complexity II 43 / 52

A very instructive PSPACE-reduction

Let CONT-REG be the following problem:

CONT-REG = {(r1, r2) | r1 and r2 are regular

expressions such that r1 ⊆ r2}

Important applications:

I Query optimisation over XML databases

Theorem (Meyer & Stockmeyer)

CONT-REG is PSPACE-complete.

Proof in Marcelo’s slides (you know the upper bound)

IIC3242 – Time and space complexity II 44 / 52

Two important space complexity classes

Definition

LOGSPACE is the class of languages decided by a deterministic
machine running in logarithmic space:

LOGSPACE = DSPACE(logn).

NLOGSPACE is the class of languages decided by a
nondeterministic machine running in logarithmic space:

NLOGSPACE = NSPACE(logn).

The input tape is crucial here

IIC3242 – Time and space complexity II 45 / 52

Two important space complexity classes

These two classes are exact (unlike PTIME and NP):

I Why are they important?

I With logarithmic space we can maintain pointers to the input

I Of course, only a constant number of pointers

I But this is what the actual code usually does

Exercise

Show that A = {0k1k | k ≥ 0} is in LOGSPACE.

IIC3242 – Time and space complexity II 46 / 52

An important NLOGSPACE problem

PATH = {〈G , s, t〉 | G is a directed graph with a path from s to t}

Algorithm for PATH:

1. Write s on the first work tape

2. Write 0 on the second work tape (counting)

3. Repeat until you reach t or have n = |G | on second work tape:

4. Guess a node (non deterministically)

5. If it is not reachable from the one on tape 1 reject

6. If it is replace tape 1 with this node

7. Increase the counter on tape 2 by 1

8. If t was reached accept

IIC3242 – Time and space complexity II 47 / 52

NLOGSPACE-completeness

For NLOGSPACE-completeness we use LOGSPACE reductions

That is, B is NLOGSPACE-complete if:

1. B ∈ NLOGSPACE and;

2. For every A ∈ NLOGSPACE we have that A ≤L B

Would polynomial time reductions work?

Can we define LOGSPACE-completeness in the same way?

IIC3242 – Time and space complexity II 48 / 52

NLOGSPACE-completeness: PATH

Theorem

PATH is NLOGSPACE-complete.

Proof: We know the upper bound.

We actually also know the lower bound (Savitch’s theorem).

That is, we only need to construct the graph G (M,w)

Recall: in our reductions we use machines with output tapes, so
the fact that G (M,w) is huge will not matter

IIC3242 – Time and space complexity II 49 / 52

NLOGSPACE-completeness: PATH

Let M be a NLOGSPACE machine and w an input

Our reduction first lists all the nodes of G (M,w):

I Each node is a configuration (of M on w)

I So is of size c · log |w |, for some constant c

I We generate all strings of this length (one by one)

I And output the ones that are valid configurations of M

Wlog there is only one accepting configuration (how to achieve
this?)

This is clearly using only LOGSPACE

IIC3242 – Time and space complexity II 50 / 52

NLOGSPACE-completeness: PATH

Next we generate all the edges:

I Try each pair (c1, c2) of configurations

I If M can move from c1 to c2 output the edge

I We check this by comparing the head position in c1 with
position in c2

Start node = initial configuration; end node = accepting
configuration

IIC3242 – Time and space complexity II 51 / 52

NLOGSPACE-completeness: PATH

This gives us:

Corollary

NLOGSPACE ⊆ PTIME.

Next, we will explore connections between complexity classes in
detail

IIC3242 – Time and space complexity II 52 / 52

