

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA DEPARTAMENTO DE CIENCIA DE LA COMPUTACION

Complexity Theory - IIC3242 Homework 5 Deadline: Friday, June 21, 2019

1 The first two levels of PH [6 points]

Let φ be a propositional formula in conjunctive normal form, and σ a valuation. We say that σ is **optimal** for φ , if the number of clauses of φ satisfied by σ is k, and there is no valuation σ' that satisfies k+1 or more clauses of φ . Note that if the entire formula φ is satisfiable, then any assignment satisfying it is optimal. The more interesting formulas are the ones not satisfiable.

As an example, take the formula $\varphi = (x \lor y \lor z) \land (\neg x \lor \neg y) \land (x \lor \neg y) \land (\neg x \lor y) \land (x \lor y)$. Here we have that a valuation σ with $\sigma(z) = 1$ is optimal, as it always makes 4 clauses true (irrespective of the values assigned to x and y). On the other hand, the valuation $\sigma(x) = \sigma(y) = \sigma(z) = 0$ makes only 3 clauses true. Consider the following problem:

 $MAX - SAT = \{(\varphi, k) : \varphi \text{ is a formula, and every optimal assignment for } \varphi \text{ satisfies precisely } k \text{ clauses}\}.$

- a) Show that $MAX SAT \in \Sigma_2^P$. [2 point]
- b) Show that $MAX SAT \in NP$ if and only if NP = co-NP. [4 points]