

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA DEPARTAMENTO DE CIENCIA DE LA COMPUTACION

Complexity Theory, Semester I 2019 - IIC3242 Homework 4 Deadline: Friday, June 7th, 2019

1 Cycle [2 points]

A cycle in a *directed* graph G = (V, E) is a sequence $v_0v_1 \dots v_k$, where $k \ge 1$, $(v_i, v_{i+1}) \in E$, for $0 \le i \le k-1$, and $v_0 = v_k$. Consider the language:

 $CYCLE = \{ \langle G, v \rangle \mid \text{ where } v \text{ belongs to some cycle in } G \}.$

Show that CYCLE is NLOGSPACE-complete. Note that you need to show both the upper and the lower bound.

2 Inefficient problems [1 point]

Define the language U as follows:

 $U = \{ \langle M, w, \#^t \rangle \mid M \text{ is a non-deterministic TM which accepts } w \text{ within } 2^t \}$

steps, on some branch of its computation }.

Show that U can not be decided in polynomial time.

3 Impact of inefficient problems on PTIME and NP [3 points]

Show that 2EXPTIME \neq 2NEXPTIME implies that PTIME \neq NP. Recall that 2EXPTIME denotes the class of all languages solvable by a deterministic Turing machine running in time $O(2^{2^{n^{c}}})$, and similarly for 2NEXPTIME.

Hint: Problem 2 can help you.